Keyword Search Result

[Keyword] sparse representation(40hit)

1-20hit(40hit)

  • Introduction to Compressed Sensing with Python Open Access

    Masaaki NAGAHARA  

     
    INVITED PAPER-Fundamental Theories for Communications

      Pubricized:
    2023/08/15
      Vol:
    E107-B No:1
      Page(s):
    126-138

    Compressed sensing is a rapidly growing research field in signal and image processing, machine learning, statistics, and systems control. In this survey paper, we provide a review of the theoretical foundations of compressed sensing and present state-of-the-art algorithms for solving the corresponding optimization problems. Additionally, we discuss several practical applications of compressed sensing, such as group testing, sparse system identification, and sparse feedback gain design, and demonstrate their effectiveness through Python programs. This survey paper aims to contribute to the advancement of compressed sensing research and its practical applications in various scientific disciplines.

  • Network Traffic Anomaly Detection: A Revisiting to Gaussian Process and Sparse Representation

    Yitu WANG  Takayuki NAKACHI  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2023/06/27
      Vol:
    E107-A No:1
      Page(s):
    125-133

    Seen from the Internet Service Provider (ISP) side, network traffic monitoring is an indispensable part during network service provisioning, which facilitates maintaining the security and reliability of the communication networks. Among the numerous traffic conditions, we should pay extra attention to traffic anomaly, which significantly affects the network performance. With the advancement of Machine Learning (ML), data-driven traffic anomaly detection algorithms have established high reputation due to the high accuracy and generality. However, they are faced with challenges on inefficient traffic feature extraction and high computational complexity, especially when taking the evolving property of traffic process into consideration. In this paper, we proposed an online learning framework for traffic anomaly detection by embracing Gaussian Process (GP) and Sparse Representation (SR) in two steps: 1). To extract traffic features from past records, and better understand these features, we adopt GP with a special kernel, i.e., mixture of Gaussian in the spectral domain, which makes it possible to more accurately model the network traffic for improving the performance of traffic anomaly detection. 2). To combat noise and modeling error, observing the inherent self-similarity and periodicity properties of network traffic, we manually design a feature vector, based on which SR is adopted to perform robust binary classification. Finally, we demonstrate the superiority of the proposed framework in terms of detection accuracy through simulation.

  • Multiclass Dictionary-Based Statistical Iterative Reconstruction for Low-Dose CT

    Hiryu KAMOSHITA  Daichi KITAHARA  Ken'ichi FUJIMOTO  Laurent CONDAT  Akira HIRABAYASHI  

     
    PAPER-Numerical Analysis and Optimization

      Pubricized:
    2020/10/06
      Vol:
    E104-A No:4
      Page(s):
    702-713

    This paper proposes a high-quality computed tomography (CT) image reconstruction method from low-dose X-ray projection data. A state-of-the-art method, proposed by Xu et al., exploits dictionary learning for image patches. This method generates an overcomplete dictionary from patches of standard-dose CT images and reconstructs low-dose CT images by minimizing the sum of a data fidelity and a regularization term based on sparse representations with the dictionary. However, this method does not take characteristics of each patch, such as textures or edges, into account. In this paper, we propose to classify all patches into several classes and utilize an individual dictionary with an individual regularization parameter for each class. Furthermore, for fast computation, we introduce the orthogonality to column vectors of each dictionary. Since similar patches are collected in the same cluster, accuracy degradation by the orthogonality hardly occurs. Our simulations show that the proposed method outperforms the state-of-the-art in terms of both accuracy and speed.

  • Rust Detection of Steel Structure via One-Class Classification and L2 Sparse Representation with Decision Fusion

    Guizhong ZHANG  Baoxian WANG  Zhaobo YAN  Yiqiang LI  Huaizhi YANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/11/11
      Vol:
    E103-D No:2
      Page(s):
    450-453

    In this work, we present one novel rust detection method based upon one-class classification and L2 sparse representation (SR) with decision fusion. Firstly, a new color contrast descriptor is proposed for extracting the rust features of steel structure images. Considering that the patterns of rust features are more simplified than those of non-rust ones, one-class support vector machine (SVM) classifier and L2 SR classifier are designed with these rust image features, respectively. After that, a multiplicative fusion rule is advocated for combining the one-class SVM and L2 SR modules, thereby achieving more accurate rust detecting results. In the experiments, we conduct numerous experiments, and when compared with other developed rust detectors, the presented method can offer better rust detecting performances.

  • Secure Overcomplete Dictionary Learning for Sparse Representation

    Takayuki NAKACHI  Yukihiro BANDOH  Hitoshi KIYA  

     
    PAPER

      Pubricized:
    2019/10/09
      Vol:
    E103-D No:1
      Page(s):
    50-58

    In this paper, we propose secure dictionary learning based on a random unitary transform for sparse representation. Currently, edge cloud computing is spreading to many application fields including services that use sparse coding. This situation raises many new privacy concerns. Edge cloud computing poses several serious issues for end users, such as unauthorized use and leak of data, and privacy failures. The proposed scheme provides practical MOD and K-SVD dictionary learning algorithms that allow computation on encrypted signals. We prove, theoretically, that the proposal has exactly the same dictionary learning estimation performance as the non-encrypted variant of MOD and K-SVD algorithms. We apply it to secure image modeling based on an image patch model. Finally, we demonstrate its performance on synthetic data and a secure image modeling application for natural images.

  • Real-Time Sparse Visual Tracking Using Circulant Reverse Lasso Model

    Chenggang GUO  Dongyi CHEN  Zhiqi HUANG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2018/10/09
      Vol:
    E102-D No:1
      Page(s):
    175-184

    Sparse representation has been successfully applied to visual tracking. Recent progresses in sparse tracking are mainly made within the particle filter framework. However, most sparse trackers need to extract complex feature representations for each particle in the limited sample space, leading to expensive computation cost and yielding inferior tracking performance. To deal with the above issues, we propose a novel sparse tracking method based on the circulant reverse lasso model. Benefiting from the properties of circulant matrices, densely sampled target candidates are implicitly generated by cyclically shifting the base feature descriptors, and then embedded into a reverse sparse reconstruction model as a dictionary to encode a robust appearance template. The alternating direction method of multipliers is employed for solving the reverse sparse model and the optimization process can be efficiently solved in the frequency domain, which enables the proposed tracker to run in real-time. The calculated sparse coefficient map represents the similarity scores between the template and circular shifted samples. Thus the target location can be directly predicted according to the coordinates of the peak coefficient. A scale-aware template updating strategy is combined with the correlation filter template learning to take into account both appearance deformations and scale variations. Both quantitative and qualitative evaluations on two challenging tracking benchmarks demonstrate that the proposed algorithm performs favorably against several state-of-the-art sparse representation based tracking methods.

  • Image Watermarking Technique Using Embedder and Extractor Neural Networks

    Ippei HAMAMOTO  Masaki KAWAMURA  

     
    PAPER

      Pubricized:
    2018/10/19
      Vol:
    E102-D No:1
      Page(s):
    19-30

    An autoencoder has the potential ability to compress and decompress information. In this work, we consider the process of generating a stego-image from an original image and watermarks as compression, and the process of recovering the original image and watermarks from the stego-image as decompression. We propose embedder and extractor neural networks based on the autoencoder. The embedder network learns mapping from the DCT coefficients of the original image and a watermark to those of the stego-image. The extractor network learns mapping from the DCT coefficients of the stego-image to the watermark. Once the proposed neural network has been trained, the network can embed and extract the watermark into unlearned test images. We investigated the relation between the number of neurons and network performance by computer simulations and found that the trained neural network could provide high-quality stego-images and watermarks with few errors. We also evaluated the robustness against JPEG compression and found that, when suitable parameters were used, the watermarks were extracted with an average BER lower than 0.01 and image quality over 35 dB when the quality factor Q was over 50. We also investigated how to represent the watermarks in the stego-image by our neural network. There are two possibilities: distributed representation and sparse representation. From the results of investigation into the output of the stego layer (3rd layer), we found that the distributed representation emerged at an early learning step and then sparse representation came out at a later step.

  • Binary Sparse Representation Based on Arbitrary Quality Metrics and Its Applications

    Takahiro OGAWA  Sho TAKAHASHI  Naofumi WADA  Akira TANAKA  Miki HASEYAMA  

     
    PAPER-Image, Vision

      Vol:
    E101-A No:11
      Page(s):
    1776-1785

    Binary sparse representation based on arbitrary quality metrics and its applications are presented in this paper. The novelties of the proposed method are twofold. First, the proposed method newly derives sparse representation for which representation coefficients are binary values, and this enables selection of arbitrary image quality metrics. This new sparse representation can generate quality metric-independent subspaces with simplification of the calculation procedures. Second, visual saliency is used in the proposed method for pooling the quality values obtained for all of the parts within target images. This approach enables visually pleasant approximation of the target images more successfully. By introducing the above two novel approaches, successful image approximation considering human perception becomes feasible. Since the proposed method can provide lower-dimensional subspaces that are obtained by better image quality metrics, realization of several image reconstruction tasks can be expected. Experimental results showed high performance of the proposed method in terms of two image reconstruction tasks, image inpainting and super-resolution.

  • An Efficient Misalignment Method for Visual Tracking Based on Sparse Representation

    Shan JIANG  Cheng HAN  Xiaoqiang DI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2018/05/14
      Vol:
    E101-D No:8
      Page(s):
    2123-2131

    Sparse representation has been widely applied to visual tracking for several years. In the sparse representation framework, tracking problem is transferred into solving an L1 minimization issue. However, during the tracking procedure, the appearance of target was affected by external environment. Therefore, we proposed a robust tracking algorithm based on the traditional sparse representation jointly particle filter framework. First, we obtained the observation image set from particle filter. Furthermore, we introduced a 2D transformation on the observation image set, which enables the tracking target candidates set more robust to handle misalignment problem in complex scene. Moreover, we adopt the occlusion detection mechanism before template updating, reducing the drift problem effectively. Experimental evaluations on five public challenging sequences, which exhibit occlusions, illuminating variations, scale changes, motion blur, and our tracker demonstrate accuracy and robustness in comparisons with the state-of-the-arts.

  • From Easy to Difficult: A Self-Paced Multi-Task Joint Sparse Representation Method

    Lihua GUO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2018/05/16
      Vol:
    E101-D No:8
      Page(s):
    2115-2122

    Multi-task joint sparse representation (MTJSR) is one kind of efficient multi-task learning (MTL) method for solving different problems together using a shared sparse representation. Based on the learning mechanism in human, which is a self-paced learning by gradually training the tasks from easy to difficult, I apply this mechanism into MTJSR, and propose a multi-task joint sparse representation with self-paced learning (MTJSR-SP) algorithm. In MTJSR-SP, the self-paced learning mechanism is considered as a regularizer of optimization function, and an iterative optimization is applied to solve it. Comparing with the traditional MTL methods, MTJSR-SP has more robustness to the noise and outliers. The experimental results on some datasets, i.e. two synthesized datasets, four datasets from UCI machine learning repository, an oxford flower dataset and a Caltech-256 image categorization dataset, are used to validate the efficiency of MTJSR-SP.

  • Action Recognition Using Low-Rank Sparse Representation

    Shilei CHENG  Song GU  Maoquan YE  Mei XIE  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2017/11/24
      Vol:
    E101-D No:3
      Page(s):
    830-834

    Human action recognition in videos draws huge research interests in computer vision. The Bag-of-Word model is quite commonly used to obtain the video level representations, however, BoW model roughly assigns each feature vector to its nearest visual word and the collection of unordered words ignores the interest points' spatial information, inevitably causing nontrivial quantization errors and impairing improvements on classification rates. To address these drawbacks, we propose an approach for action recognition by encoding spatio-temporal log Euclidean covariance matrix (ST-LECM) features within the low-rank and sparse representation framework. Motivated by low rank matrix recovery, local descriptors in a spatial temporal neighborhood have similar representation and should be approximately low rank. The learned coefficients can not only capture the global data structures, but also preserve consistent. Experimental results showed that the proposed approach yields excellent recognition performance on synthetic video datasets and are robust to action variability, view variations and partial occlusion.

  • Image Pattern Similarity Index and Its Application to Task-Specific Transfer Learning

    Jun WANG  Guoqing WANG  Leida LI  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/08/31
      Vol:
    E100-D No:12
      Page(s):
    3032-3035

    A quantized index for evaluating the pattern similarity of two different datasets is designed by calculating the number of correlated dictionary atoms. Guided by this theory, task-specific biometric recognition model transferred from state-of-the-art DNN models is realized for both face and vein recognition.

  • Random-Valued Impulse Noise Removal Using Non-Local Search for Similar Structures and Sparse Representation

    Kengo TSUDA  Takanori FUJISAWA  Masaaki IKEHARA  

     
    PAPER-Image

      Vol:
    E100-A No:10
      Page(s):
    2146-2153

    In this paper, we introduce a new method to remove random-valued impulse noise in an image. Random-valued impulse noise replaces the pixel value at a random position by a random value. Due to the randomness of the noisy pixel values, it is difficult to detect them by comparison with neighboring pixels, which is used in many conventional methods. Then we improve the recent noise detector which uses a non-local search of similar structure. Next we propose a new noise removal algorithm by sparse representation using DCT basis. Furthermore, the sparse representation can remove impulse noise by using the neighboring similar image patch. This method has much more superior noise removal performance than conventional methods at images. We confirm the effectiveness of the proposed method quantitatively and qualitatively.

  • A Speech Enhancement Method Based on Multi-Task Bayesian Compressive Sensing

    Hanxu YOU  Zhixian MA  Wei LI  Jie ZHU  

     
    PAPER-Speech and Hearing

      Pubricized:
    2016/11/30
      Vol:
    E100-D No:3
      Page(s):
    556-563

    Traditional speech enhancement (SE) algorithms usually have fluctuant performance when they deal with different types of noisy speech signals. In this paper, we propose multi-task Bayesian compressive sensing based speech enhancement (MT-BCS-SE) algorithm to achieve not only comparable performance to but also more stable performance than traditional SE algorithms. MT-BCS-SE algorithm utilizes the dependence information among compressive sensing (CS) measurements and the sparsity of speech signals to perform SE. To obtain sufficient sparsity of speech signals, we adopt overcomplete dictionary to transform speech signals into sparse representations. K-SVD algorithm is employed to learn various overcomplete dictionaries. The influence of the overcomplete dictionary on MT-BCS-SE algorithm is evaluated through large numbers of experiments, so that the most suitable dictionary could be adopted by MT-BCS-SE algorithm for obtaining the best performance. Experiments were conducted on well-known NOIZEUS corpus to evaluate the performance of the proposed algorithm. In these cases of NOIZEUS corpus, MT-BCS-SE is shown that to be competitive or even superior to traditional SE algorithms, such as optimally-modified log-spectral amplitude (OMLSA), multi-band spectral subtraction (SSMul), and minimum mean square error (MMSE), in terms of signal-noise ratio (SNR), speech enhancement gain (SEG) and perceptual evaluation of speech quality (PESQ) and to have better stability than traditional SE algorithms.

  • Sparse Representation for Color Image Super-Resolution with Image Quality Difference Evaluation

    Zi-wen WANG  Guo-rui FENG  Ling-yan FAN  Jin-wei WANG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2016/10/19
      Vol:
    E100-D No:1
      Page(s):
    150-159

    The sparse representation models have been widely applied in image super-resolution. The certain optimization problem is supposed and can be solved by the iterative shrinkage algorithm. During iteration, the update of dictionaries and similar patches is necessary to obtain prior knowledge to better solve such ill-conditioned problem as image super-resolution. However, both the processes of iteration and update often spend a lot of time, which will be a bottleneck in practice. To solve it, in this paper, we present the concept of image quality difference based on generalized Gaussian distribution feature which has the same trend with the variation of Peak Signal to Noise Ratio (PSNR), and we update dictionaries or similar patches from the termination strategy according to the adaptive threshold of the image quality difference. Based on this point, we present two sparse representation algorithms for image super-resolution, one achieves the further improvement in image quality and the other decreases running time on the basis of image quality assurance. Experimental results also show that our quantitative results on several test datasets are in line with exceptions.

  • Robust Face Alignment with Random Forest: Analysis of Initialization, Landmarks Regression, and Shape Regularization Methods

    Chun Fui LIEW  Takehisa YAIRI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2015/10/27
      Vol:
    E99-D No:2
      Page(s):
    496-504

    Random forest regressor has recently been proposed as a local landmark estimator in the face alignment problem. It has been shown that random forest regressor can achieve accurate, fast, and robust performance when coupled with a global face-shape regularizer. In this paper, we extend this approach and propose a new Local Forest Classification and Regression (LFCR) framework in order to handle face images with large yaw angles. Specifically, the LFCR has an additional classification step prior to the regression step. Our experiment results show that this additional classification step is useful in rejecting outliers prior to the regression step, thus improving the face alignment results. We also analyze each system component through detailed experiments. In addition to the selection of feature descriptors and several important tuning parameters of the random forest regressor, we examine different initialization and shape regularization processes. We compare our best outcomes to the state-of-the-art system and show that our method outperforms other parametric shape-fitting approaches.

  • Real-Valued Reweighted l1 Norm Minimization Method Based on Data Reconstruction in MIMO Radar

    Qi LIU  Wei WANG  Dong LIANG  Xianpeng WANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:11
      Page(s):
    2307-2313

    In this paper, a real-valued reweighted l1 norm minimization method based on data reconstruction in monostatic multiple-input multiple-output (MIMO) radar is proposed. Exploiting the special structure of the received data, and through the received data reconstruction approach and unitary transformation technique, a one-dimensional real-valued received data matrix can be obtained for recovering the sparse signal. Then a weight matrix based on real-valued MUSIC spectrum is designed for reweighting l1 norm minimization to enhance the sparsity of solution. Finally, the DOA can be estimated by finding the non-zero rows in the recovered matrix. Compared with traditional l1 norm-based minimization methods, the proposed method provides better angle estimation performance. Simulation results are presented to verify the effectiveness and advantage of the proposed method.

  • Consistent Sparse Representation for Abnormal Event Detection

    Zhong ZHANG  Shuang LIU  Zhiwei ZHANG  

     
    LETTER-Pattern Recognition

      Pubricized:
    2015/07/17
      Vol:
    E98-D No:10
      Page(s):
    1866-1870

    Sparsity-based methods have been recently applied to abnormal event detection and have achieved impressive results. However, most such methods suffer from the problem of dimensionality curse; furthermore, they also take no consideration of the relationship among coefficient vectors. In this paper, we propose a novel method called consistent sparse representation (CSR) to overcome the drawbacks. We first reconstruct each feature in the space spanned by the clustering centers of training features so as to reduce the dimensionality of features and preserve the neighboring structure. Then, the consistent regularization is added to the sparse representation model, which explicitly considers the relationship of coefficient vectors. Our method is verified on two challenging databases (UCSD Ped1 database and Subway batabase), and the experimental results demonstrate that our method obtains better results than previous methods in abnormal event detection.

  • Direction-of-Arrival Estimation Using an Array Covariance Vector and a Reweighted l1 Norm

    Xiao Yu LUO  Xiao chao FEI  Lu GAN  Ping WEI  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:9
      Page(s):
    1964-1967

    We propose a novel sparse representation-based direction-of-arrival (DOA) estimation method. In contrast to those that approximate l0-norm minimization by l1-norm minimization, our method designs a reweighted l1 norm to substitute the l0 norm. The capability of the reweighted l1 norm to bridge the gap between the l0- and l1-norm minimization is then justified. In addition, an array covariance vector without redundancy is utilized to extend the aperture. It is proved that the degree of freedom is increased as such. The simulation results show that the proposed method performs much better than l1-type methods when the signal-to-noise ratio (SNR) is low and when the number of snapshots is small.

  • Discriminative Semantic Parts Learning for Object Detection

    Yurui XIE  Qingbo WU  Bing LUO  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2015/04/15
      Vol:
    E98-D No:7
      Page(s):
    1434-1438

    In this letter, we propose a new semantic parts learning approach to address the object detection problem with only the bounding boxes of object category labels. Our main observation is that even though the appearance and arrangement of object parts might have variations across the instances of different object categories, the constituent parts still maintain geometric consistency. Specifically, we propose a discriminative clustering method with sparse representation refinement to discover the mid-level semantic part set automatically. Then each semantic part detector is learned by the linear SVM in a one-vs-all manner. Finally, we utilize the learned part detectors to score the test image and integrate all the response maps of part detectors to obtain the detection result. The learned class-generic part detectors have the ability to capture the objects across different categories. Experimental results show that the performance of our approach can outperform some recent competing methods.

1-20hit(40hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.