1-5hit |
Tetsuya IIZUKA Meikan CHIN Toru NAKURA Kunihiro ASADA
This paper proposes a reference-clock-less quick-start-up CDR that resumes from a stand-by state only with a 4-bit preamble utilizing a phase generator with an embedded Time-to-Digital Converter (TDC). The phase generator detects 1-UI time interval by using its internal TDC and works as a self-tunable digitally-controlled delay line. Once the phase generator coarsely tunes the recovered clock period, then the residual time difference is finely tuned by a fine Digital-to-Time Converter (DTC). Since the tuning resolution of the fine DTC is matched by design with the time resolution of the TDC that is used as a phase detector, the fine tuning completes instantaneously. After the initial coarse and fine delay tuning, the feedback loop for frequency tracking is activated in order to improve Consecutive Identical Digits (CID) tolerance of the CDR. By applying the frequency tracking architecture, the proposed CDR achieves more than 100bits of CID tolerance. A prototype implemented in a 65nm bulk CMOS process operates at a 0.9-2.15Gbps continuous rate. It consumes 5.1-8.4mA in its active state and 42μA leakage current in its stand-by state from a 1.0V supply.
Akihito HIRAI Koji TSUTSUMI Hideyuki NAKAMIZO Eiji TANIGUCHI Kenichi TAJIMA Kazutomi MORI Masaomi TSURU Mitsuhiro SHIMOZAWA
In this paper, a high-frequency resolution Digital Frequency Discriminator (DFD) IC using a Time to Digital Converter (TDC) and an edge counter for Instantaneous Frequency Measurement (IFM) is proposed. In the proposed DFD, the TDC measures the time of the maximum periods of divided RF short pulse signals, and the edge counter counts the maximum number of periods of the signal. By measuring the multiple periods with the TDC and the edge counter, the proposed DFD improves the frequency resolution compared with that of the measuring one period because it is proportional to reciprocal of the measurement time of TDC. The DFD was fabricated using 0.18-um SiGe-BiCMOS. Frequency accuracy below 0.39MHz and frequency precision below 1.58 MHz-RMS were achieved during 50 ns detection time in 0.3 GHz to 5.5 GHz band with the temperature range from -40 to 85 degrees.
Xin-Gang WANG Fei WANG Rui JIA Rui CHEN Tian ZHI Hai-Gang YANG
This paper proposes a coarse-fine Time-to-Digital Converter (TDC), based on a Ring-Tapped Delay Line (RTDL). The TDC achieves the picosecond's level timing resolution and microsecond's level dynamic range at low cost. The TDC is composed of two coarse time measurement blocks, a time residue generator, and a fine time measurement block. In the coarse blocks, RTDL is constructed by redesigning the conventional Tapped Delay Line (TDL) in a ring structure. A 12-bit counter is employed in one of the two coarse blocks to count the cycle times of the signal traveling in the RTDL. In this way, the input range is increased up to 20.3µs without use of an external reference clock. Besides, the setup time of soft-edged D-flip-flops (SDFFs) adopted in RTDL is set to zero. The adjustable time residue generator picks up the time residue of the coarse block and propagates the residue to the fine block. In the fine block, we use a Vernier Ring Oscillator (VRO) with MOS capacitors to achieve a scalable timing resolution of 11.8ps (1 LSB). Experimental results show that the measured characteristic curve has high-level linearity; the measured DNL and INL are within ± 0.6 LSB and ± 1.5 LSB, respectively. When stimulated by constant interval input, the standard deviation of the system is below 0.35 LSB. The dead time of the proposed TDC is less than 650ps. When operating at 5 MSPS at 3.3V power supply, the power consumption of the chip is 21.5mW. Owing to the use of RTDL and VRO structures, the chip core area is only 0.35mm × 0.28mm in a 0.35µm CMOS process.
YoungHwa KIM AnSoo PARK Joon-Sung PARK YoungGun PU Hyung-Gu PARK HongJin KIM Kang-Yoon LEE
In this paper, we propose a two-step TDC with phase-interpolator and time amplifier to satisfy high resolution at 2.4 GHz input frequency by implementing delay time less than that of an inverter delay. The accuracy of phase-interpolator is improved for process variation using the resistor automatic-tuning circuit. The gain of time amplifier is improved using the delay time difference between two delay cells. It is implemented in a 0.13 µm CMOS process with a die area of 0.68 mm2. And the power consumption is 14.4 mW at a 1.2 V supply voltage. The resolution and input frequency of the TDC are 0.357 ps and 2.4 GHz, respectively.
Jae-seung LEE Jae-Yoon SIM Hong June PARK
A high-throughput on-chip monitoring circuit with a digital output is proposed for the variations of the NMOS and PMOS threshold voltages. A voltage-controlled delay line (VCDL) and a time-to-digital converter (TDC) are used to convert a small difference in analog voltage into a large difference in time delay. This circuit was applied to the transistors of W = 10 µm and L = 0.18 µm in a 1616 array matrix fabricated with a 0.18-µm process. The measurement of the threshold voltage shows that the maximum peak-to-peak intra-chip variation of NMOS and PMOS transistors are about 31.7 mV and 32.2 mV, respectively, for the temperature range from -25 to 75. The voltage resolutions of NMOS and PMOS transistors are measured to be 1.10 mV/bit and 3.53 mV/bit at 25, respectively. The 8-bit digital code is generated for the threshold voltage of a transistor in every 125 ns, which corresponds to the 8-MHz throughput.