Keyword Search Result

[Keyword] transient analysis(21hit)

1-20hit(21hit)

  • Transient Analysis of Electromagnetic Scattering from Large-Scale Objects Using Physical Optics with Fast Inverse Laplace Transform Open Access

    Seiya KISHIMOTO  Ryoya OGINO  Kenta ARASE  Shinichiro OHNUKI  

     
    BRIEF PAPER

      Pubricized:
    2024/02/29
      Vol:
    E107-C No:11
      Page(s):
    486-489

    This paper introduces a computational approach for transient analysis of extensive scattering problems. This novel method is based on the combination of physical optics (PO) and the fast inverse Laplace transform (FILT). PO is a technique for analyzing electromagnetic scattering from large-scale objects. We modify PO for application in the complex frequency domain, where the scattered fields are evaluated. The complex frequency function is efficiently transformed into the time domain using FILT. The effectiveness of this combination is demonstrated through large-scale analysis and transient response for a short pulse incidence. The accuracy is investigated and validated by comparison with reference solutions.

  • An Adaptive Time-Step Control Method in Damped Pseudo-Transient Analysis for Solving Nonlinear DC Circuit Equations

    Xiao WU  Zhou JIN  Dan NIU  Yasuaki INOUE  

     
    PAPER-Nonlinear Problems

      Vol:
    E100-A No:2
      Page(s):
    619-628

    An adaptive time-step control method is proposed for the damped pseudo-transient analysis (DPTA) method. The new method is based on the idea of switched evolution/relaxation (SER), which can automatically adapt the step size for different circuit states. Considering the number of iterations needed for the convergence of Newton-Raphson (NR) method and the states in previous steps, the proposed method can automatically optimize the time-step size. Using numerical examples, the new method is proven to improve robustness, simulation efficiency, and the convergence of DPTA for solving nonlinear DC circuit equations.

  • An Effective Time-Step Control Method in Damped Pseudo-Transient Analysis for Solving Nonlinear DC Circuit Equations

    Xiao WU  Zhou JIN  Dan NIU  Yasuaki INOUE  

    This Paper was withdrawn by the authors. The withdrawal procedure has been completed on July 19, 2016.
     
    PAPER-Nonlinear Problems

      Vol:
    E98-A No:11
      Page(s):
    2274-2282

    An effective time-step control method is proposed for the damped pseudo-transient analysis (DPTA). This method is based on the idea of the switched evolution/relaxation method which can automatically adapt the step size for different circuit states. Considering the number of iterations needed for the convergence of the Newton-Raphson method, the new method adapts the suitable time-step size with the status of previous steps. By numerical examples, it is proved that this method can improve the simulation efficiency and convergence for the DPTA method to solve nonlinear DC circuits.

  • Tracking Analysis of Adaptive Filters with Error and Matrix Data Nonlinearities

    Wemer M. WEE  Isao YAMADA  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:8
      Page(s):
    1659-1673

    We consider a unified approach to the tracking analysis of adaptive filters with error and matrix data nonlinearities. Using energy-conservation arguments, we not only derive earlier results in a unified manner, but we also obtain new performance results for more general adaptive algorithms without requiring the restriction of the regression data to a particular distribution. Numerical simulations support the theoretical results.

  • Effective Implementation and Embedding Algorithms of CEPTA Method for Finding DC Operating Points

    Zhou JIN  Xiao WU  Dan NIU  Yasuaki INOUE  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E96-A No:12
      Page(s):
    2524-2532

    Recently, the compound element pseudo transient analysis, CEPTA, method is regarded as an efficient practical method to find DC operating points of nonlinear circuits when the Newton-Raphson method fails. In the previous CEPTA method, an effective SPICE3 implementation algorithm was proposed without expanding the Jacobian matrix. However the limitation of step size was not well considered. Thus, the non-convergence problem occurs and the simulation efficiency is still a big challenge for current LSI nonlinear cicuits, especially for some practical large-scale circuits. Therefore, in this paper, we propose a new SPICE3 implementation algorithm and an embedding algorithm, which is where to insert the pseudo capacitors, for the CEPTA method. The proposed implementation algorithm has no limitation for step size and can significantly improve simulation efficiency. Considering the existence of various types of circuits, we extend some possible embedding positions. Numerical examples demonstrate the improvement of simulation efficiency and convergence performance.

  • Tracking Analysis of Adaptive Filters with Data Normalization and Error Nonlinearities

    WemerM. WEE  Isao YAMADA  

     
    PAPER-Digital Signal Processing

      Vol:
    E96-A No:11
      Page(s):
    2198-2208

    This paper presents a unified treatment of the tracking analysis of adaptive filters with data normalization and error nonlinearities. The approach we develop is based on the celebrated energy-conservation framework, which investigates the energy flow through each iteration of an adaptive filter. Aside from deriving earlier results in a unified manner, we obtain new performance results for more general filters without restricting the regression data to a particular distribution. Simulations show good agreement with the theoretical findings.

  • Survivability Analysis for a Wireless Ad Hoc Network Based on Semi-Markov Model

    Zhipeng YI  Tadashi DOHI  

     
    PAPER-Network and Communication

      Vol:
    E95-D No:12
      Page(s):
    2844-2851

    Network survivability is defined as the ability of a network keeping connected under failures and/or attacks. In this paper, we propose two stochastic models; binomial model and negative binomial model, to quantify the network survivability and compare them with the existing Poisson model. We give mathematical formulae of approximate network survivability for respective models and use them to carry out the sensitivity analysis on model parameters. Throughout numerical examples it is shown that the network survivability can change drastically when the number of network nodes is relatively small under a severe attack mode which is called the Black hole attack.

  • An Effective SPICE3 Implementation of the Compound Element Pseudo-Transient Algorithm

    Hong YU  Yasuaki INOUE  Kazutoshi SAKO  Xiaochuan HU  Zhangcai HUANG  

     
    PAPER-Nonlinear Circuits

      Vol:
    E90-A No:10
      Page(s):
    2124-2131

    The compound element pseudo-transient analysis (PTA) algorithm is an effective practical method for finding the DC operating point when the Newton-Raphson method fails. It is able to effectively prevent from the oscillation problems compared with conventional PTA algorithms. In this paper, an effective SPICE3 implementation method for the compound element PTA algorithm is proposed. It has the characteristic of not expanding the Jacobian matrix and not changing the Jacobian matrix structure when the pseudo-transient numerical simulation is being done. Thus a high simulation efficiency is guaranteed. The ability of the proposed SPICE3 implementation to avoid the oscillation problems and the simulation efficiency are demonstrated by examples.

  • An Effective Pseudo-Transient Algorithm for Finding DC Solutions of Nonlinear Circuits

    Hong YU  Yasuaki INOUE  Yuki MATSUYA  Zhangcai HUANG  

     
    PAPER-Modelling, Systems and Simulation

      Vol:
    E89-A No:10
      Page(s):
    2724-2731

    The pseudo-transient method is discussed in this paper as one of practical methods to find DC operating points of nonlinear circuits when the Newton-Raphson method fails. The mathematical description for this method is presented and an effective pseudo-transient algorithm utilizing compound pseudo-elements is proposed. Numerical examples are demonstrated to prove that our algorithm is able to avoid the oscillation problems effectively and also improve the simulation efficiency.

  • Transient Analysis of Complex-Domain Adaptive Threshold Nonlinear Algorithm (c-ATNA) for Adaptive Filters in Applications to Digital QAM Systems

    Shin'ichi KOIKE  

     
    PAPER-Digital Signal Processing

      Vol:
    E89-A No:2
      Page(s):
    469-478

    The paper presents an adaptive algorithm named adaptive threshold nonlinear algorithm for use in adaptive filters in the complex-number domain (c-ATNA) in applications to digital QAM systems. Although the c-ATNA is very simple to implement, it makes adaptive filters highly robust against impulse noise and at the same time it ensures filter convergence as fast as that of the well-known LMS algorithm. Analysis is developed to derive a set of difference equations for calculating transient behavior as well as steady-state performance. Experiment with simulations and theoretical calculations for some examples of filter convergence in the presence of Contaminated Gaussian Noise demonstrates that the c-ATNA is effective in combating impulse noise. Good agreement between simulated and theoretical convergence proves the validity of the analysis.

  • Recursive Least Absolute Error Algorithm: Analysis and Simulations

    Shin'ichi KOIKE  

     
    PAPER-Digital Signal Processing

      Vol:
    E85-A No:12
      Page(s):
    2886-2893

    Recursive least absolute(RLA) error algorithm is derived which is basically the sign algorithm (SA) combined with recursive estimation of the inverse covariance matrix of the reference input. The name RLA comes from the absolute error criterion. Analysis of the transient behavior and steady-state performance of the RLA algorithm is fully developed. Results of experiment show that the RLA algorithm considerably improves the convergence rate of the SA while preserving the robustness against impulse noise. Good agreement between the simulation and the theoretically calculated convergence validates the analysis.

  • Wiener-Hopf Analysis of Transient Phenomenon Caused by Time-Varying Resistive Screen in Waveguide

    Michinari SHIMODA  Ryuichi IWAKI  Masazumi MIYOSHI  Oleg A. TRETYAKOV  

     
    PAPER-Electromagnetic Theory

      Vol:
    E85-C No:10
      Page(s):
    1800-1807

    The transient phenomenon of electromagnetic waves caused by a time dependent resistive screen in a waveguide is treated by using Wiener-Hopf technique. A boundary-value problem is formulated to describe the phenomenon, in which the resistivity of screen varies from infinite to zero in dependence on time. Application of the Fourier transformation with respect to time derives a Wiener-Hopf equation, which is solved by a commonly known decomposition procedure. The transient field is derived from the solution of the equation in terms of the Fourier inverse transform. By using the incomplete Lipschitz-Hankel integral for the computation of the field, numerical examples are given and the transient phenomenon is discussed.

  • Transient Phenomena of Electromagnetic Waves by the Abrupt Extinction of Interior Terminative Conducting Screen in Waveguide

    Michinari SHIMODA  Ryuichi IWAKI  Masazumi MIYOSHI  Oleg A. TRETYAKOV  

     
    PAPER-Electromagnetic Theory

      Vol:
    E82-C No:8
      Page(s):
    1584-1591

    The problem of transient scattering caused by abrupt extinction of a terminative conducting screen in a waveguide is considered. First, a boundary-value problem is formulated to describe the transient phenomena, the problem in which the boundary condition depends on time. Then, application of the Fourier transformation with respect to time derives a Wiener-Hopf-type equation, which is solved by a commonly known decomposition procedure. The transient fields are obtained through the deformation of the integration path for the inverse transformation and the results are represented in terms of the incomplete Lipschitz-Hankel integrals. Numerical examples showing typical transient phenomena are attached.

  • SPICE Oriented Steady-State Analysis of Large Scale Circuits

    Takashi SUGIMOTO  Yoshifumi NISHIO  Akiko USHIDA  

     
    PAPER-Nonlinear Circuits and Bifurcation

      Vol:
    E79-A No:10
      Page(s):
    1530-1537

    In this paper, we propose a novel SPICE oriented steady-state analysis of nonlinear circuits based on the circuit partition technique. Namely, a given circuit is partitioned into the linear and nonlinear subnetworks by the application of the substitution theorem. Each subnetwork is solved using SPICE simulator by the different techniques of AC analysis and transient analysis, respectively, whose steady-state reponse is found by an iteration method. The novel points of our algorithm are as follows: Once the linear subnetworks are solved by AC analysis, each subnetwork is replaced by a simple equivalent RL or RC circuit at each frequency component. On the other hand, the reponse of nonlinear subnetworks are solved by transient analysis. If we assume that the sensitivity circuit is approximated at the DC operational point, the variational value will be also calculated from a simple RL ro RC circuit. Thus, our method is very simple and can be also applied to large scale circuits, effciently. To improve the convergency, we introduce a compensation technique which is usefully applied to stiff circuits containing components such as diodes and transistors.

  • Performance Analysis of Internally Unbuffered Large Scale ATM Switch with Bursty Traffic

    Yuji OIE  Kenji KAWAHARA  Masayuki MURATA  Hideo MIYAHARA  

     
    PAPER-Switching and Communication Processing

      Vol:
    E79-B No:3
      Page(s):
    412-423

    Many ATM switching modules with high performance have been proposed and analyzed. A development of a large scale ATM switching system (e.g., used as a central switch) is the key to realization of the broadband ISDN. However, the dimension of ATM switching ICs is limited by the technological and physical constraints on VLSI. A multistage switching configuration is one of the promising configurations for a large scale ATM switch. In this paper, we treat a 3-stage switching configuration with no internal bufferes; i.e., bufferless switches are employed at the first and second stages, and output buffered switches at the third stage. A short-term cell loss probability is analyzed in order to examine the influence of bursty traffic on performance of the bufferless switch used at the first two stages. Furthermore, we propose a 4-stage switching configuration with traffic distributors added at the first stage. This switch provides more paths between a pair of input and output ports than the 3-stage switching configuration mentioned above. A few schemes to distribute cells are compared. It is shown that the distributor successfully reduces the deterioration of cell loss probability due to bursty traffic by splitting incoming cells into several switching modules.

  • A Mixed Photonic/Electronic Circuit Simulation Including Transient Noise Sources

    Eiichi SANO  Mikio YONEYAMA  

     
    PAPER-Opto-Electronics

      Vol:
    E78-C No:4
      Page(s):
    447-453

    Device models for a laser diode, photodetector, MESFET, HEMT, bipolar transistor, diode, and resistor are proposed and are implemented in a commercial mixed-signal simulator along with models for an optical fiber, an external optical modulator, and a pulse pattern generator. The validity of the models is confirmed by comparing simulated and experimental results. The performance of a mixed photonic/electronic circuit, which is determined by a large-signal waveform and the device noises, is estimated by the present analysis method.

  • Adaptive Circuit Access Control for Network Resource Management

    Kazuhiko YAMANOUCHI  Toshikane ODA  

     
    PAPER-Communication Networks and Service

      Vol:
    E78-B No:3
      Page(s):
    303-310

    Circuit access control is a traffic control technique of rejecting calls arriving at a group of specified circuits to make the group free at a target scheduled time so that the capacity may be dynamically reallocated to serve other traffic demand. This technique plays an important role for resource allocation control in state-of-the-art capacity reconfigurable networks as well as for switching calls on a reserved basis in the ISDNs. In this paper, we present a novel adaptive scheme for circuit access control in order to overcome the inefficiency of the conventional deterministic scheme. The presented scheme is based only on knowledge about service time and bandwidth characteristics of calls. The transitional behavior of the circuit group under the scheme is analyzed, and the gain in utilization achieved by the adaptive scheme is examined. We treat a model of the circuit group shared by multi-slot calls with different service times, and describe the results of the transient analysis and the approximation method for evaluating the gains.

  • Efficient Simulation of Lossy Coupled Transmission Lines by the Application of Window Partitioning Technique to the Waveform Relaxation Approach

    Vijaya Gopal BANDI  Hideki ASAI  

     
    PAPER-Analysis of Nonlinear Circuits and Systems

      Vol:
    E77-A No:11
      Page(s):
    1742-1752

    A new algorithm, which is incorporated into the waveform relaxation analysis, for efficiently simulating the transient response of single lossy transmission lines or lossy coupled multiconductor transmission lines, terminated with arbitrary networks will be presented. This method exploits the inherent delay present in a transmission line for achieving simulation efficiency equivalent to obtaining converged waveforms with a single iteration by the conventional iterative waveform relaxation approach. To this end we propose 'line delay window partitioning' algorithm in which the simulation interval is divided into sequential windows of duration equal to the transmission line delay. This window scheme enables the computation of the reflected voltage waveforms accurately, ahead of simulation, in each window. It should be noted that the present window partitioning scheme is different from the existing window techniques which are aimed at exploiting the non–uniform convergence in different windows. In contrast, the present window technique is equivalent to achieving uniform convergence in all the windows with a single iteration. In addition our method eliminates the need to simulate the transmission line delay by the application of Branin's classical method of characteristics. Further, we describe a simple and efficient method to compute the attenuated waveforms using a particular form of lumped element model of attenuation function. Simulation examples of both single and coupled lines terminated with linear and nonlinear elements will be presented. Comparison indicates that the present method is several times faster than the previous waveform relaxation method and its accuracy is verified by the circuit simulator PSpice.

  • Transient Analysis of Packet Transmission Rate Control to Release Congestion in High Speed Networks

    Hiroshi INAI  Manabu KATO  Yuji OIE  Masayuki MURATA  Hideo MIYAHARA  

     
    PAPER

      Vol:
    E75-B No:12
      Page(s):
    1354-1366

    Rate based control is a promising way to achieve an efficient packet transmission especially in high speed packet switching networks where round trip delay is much larger than packet transmission time. Although inappropriate tuning for the parameters, increasing and decreasing factors, of the rate control function causes the performance degradation, most of the previous works so far have not studied the effect of the parameters on the performance. In this paper, we investigate the effect of the rate control parameters on the throughput under the condition that the packet loss probability is kept below a specific value, say 10-6. For this purpose, we build a queueing model and carry out a transient analysis to examine the dynamic behavior of the queue length at an intermediate node in a high speed network suffering from large propagation delay. Numerical examples exploit the optimal value of the parameters when one or two source-destination pairs transmit packets. We also discuss the effect of the propagation delay on the performance. Our model can be applicable to investigate the performance of various kinds of rate-based congestion control when the relation between the congestion measure and the rate control mechanism is given explicitly.

  • Analysis of Time Transient EM Field Response from a Dielectric Spherical Cavity

    Hiroshi SHIRAI  Eiji NAKANO  Mikio YANO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E75-C No:5
      Page(s):
    627-634

    Transient responses by a dielectric sphere have been analyzed here for a dipole source located at the center. The formulation has been constructed first in the frequency domain, then transformed into the time domain to obtain for an impulsive response by two analytical methods, namely the Singularity Expansion Method and the Wavefront Expansion Method. While the former method collects the contributions around the singularities in the complex frequency domain, the latter gives us a result which is a summation of each successive wavefront arrivals. A Gaussian pulse has been introduced to simulate an impulse response result. The Gaussian pulse response is analytically formulated by convolving Gaussian pulse with the corresponding impulse response. Numercal inversion results are also calculated by Fast Fourier Transform Algorithm. Numerical examples are shown here to compare the results obtained by these three methods and good agreement are obtained between them. Comments are often made in connection with the corresponding two dimensional cylindrical case.

1-20hit(21hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.