Keyword Search Result

[Keyword] wavelength conversion(47hit)

1-20hit(47hit)

  • S-Band WDM Transmission Using PPLN-Based Wavelength Converters and 400-Gb/s C-Band Real-Time Transceivers Open Access

    Tomoyuki KATO  Hidenobu MURANAKA  Yu TANAKA  Yuichi AKIYAMA  Takeshi HOSHIDA  Shimpei SHIMIZU  Takayuki KOBAYASHI  Takushi KAZAMA  Takeshi UMEKI  Kei WATANABE  Yutaka MIYAMOTO  

     
    PAPER

      Pubricized:
    2023/05/11
      Vol:
    E106-B No:11
      Page(s):
    1093-1101

    Multi-band WDM transmission beyond the C+L-band is a promising technology for achieving larger capacity transmission by a limited number of installed fibers. In addition to the C- and L-band, we can expect to use the S-band as the next band. Although the development of optical components for new bands, particularly transceivers, entails resource dispersion, which is one of the barriers to the realization of multi-band systems, wavelength conversion by transparent all-optical signal processing enables new wavelength bandtransmission using existing components. Therefore, we proposed a transmission system including a new wavelength band such as the S-band and made it possible to use a transceiver for the existing band by performing the whole-band wavelength conversion without using a transceiver for the new band. As a preliminary verification to demonstrate multi-band WDM transmission including S-band, we investigated the application of a novel wavelength converter between C-band and S-band, which consists of periodically poled lithium niobate waveguide, to the proposed system. We first characterized the conversion efficiency and noise figure of the wavelength converter and estimated the transmission performance of the system through the wavelength converter. Using the evaluated wavelength converters and test signals of 64 channels arranged in the C-band at 75-GHz intervals, we constructed an experimental setup for S-band transmission through an 80-km standard single-mode fiber. We then demonstrated error-free transmission of real-time 400-Gb/s DP-16QAM signals after forward error correction decoding. From the experimental results, it was clarified that the wavelength converter which realizes the uniform lossless conversion covering the whole C-band effectively achieves the S-band WDM transmission, and it was verified that the capacity improvement of the multi-band WDM system including the S-band can be expected by applying it in combination with the C+L-band WDM system.

  • Design and Characterization of Dispersion-Tailored Silicon Strip Waveguides toward Wideband Wavelength Conversion

    Hidenobu MURANAKA  Tomoyuki KATO  Shun OKADA  Tokuharu KIMURA  Yu TANAKA  Tsuyoshi YAMAMOTO  Isaac SACKEY  Gregor RONNIGER  Robert ELSCHNER  Carsten SCHMIDT-LANGHORST  Colja SCHUBERT  Takeshi HOSHIDA  

     
    PAPER

      Pubricized:
    2023/05/24
      Vol:
    E106-C No:11
      Page(s):
    757-764

    One of cost-effective ways to increase the transmission capacity of current standard wavelength division multiplexing (WDM) transmission systems is to use a wavelength band other than the C-band to transmit in multi-band. We proposed the concept of multi-band system using wavelength conversion, which can simultaneously process signals over a wide wavelength range. All-optical wavelength conversion could be used to convert C-band WDM signals into other bands in a highly nonlinear fiber (HNLF) by four-wave mixing and allow to simultaneously transmit multiple WDM signals including other than the C-band, with only C-band transceivers. Wavelength conversion has been reported for various nonlinear waveguide materials other than HNLF. In such nonlinear materials, we noticed the possibility of wideband transmission by dispersion-tailored silicon-on-insulator (SOI) waveguides. Based on the CMOS process has high accuracy, it is expected that the chromatic dispersion fluctuation could be reduced in mass production. As a first step in the investigation of the broadness of wavelength conversion using SOI-based waveguides, we designed and fabricated dispersion-tailored 12 strip waveguides provided with an edge coupler at both ends. Each of the 12 waveguides having different widths and lengths and is connected to fibers via lensed fibers or by lenses. In order to characterize each waveguide, the pump-probe experimental setup was constructed using a tunable light source as pump and an unmodulated 96-ch C-band WDM test signal. Using this setup, we evaluate insertion loss, input power dependence, conversion bandwidth and conversion efficiency. We confirmed C-band test signal was converted to the S-band and the L-band using the same silicon waveguide with 3dB conversion bandwidth over 100-nm. Furthermore, an increased design tolerance of at least 90nm was confirmed for C-to-S conversion by shortening the waveguide length. It is confirmed that the wavelength converters using the nonlinear waveguide has sufficiently wide conversion bandwidth to enhance the multi-band WDM transmission system.

  • Remote Pumped All Optical Wavelength Converter for Metro-Core Photonic Networks

    Ryota TSUJI  Daisuke HISANO  Ken MISHINA  Akihiro MARUTA  

     
    PAPER

      Pubricized:
    2020/05/20
      Vol:
    E103-B No:11
      Page(s):
    1282-1290

    Wavelength division multiplexing (WDM) scheme is used widely in photonic metro-core networks. In a WDM network, wavelength continuity constraint is employed to simply construct relay nodes. This constraint reduces the wavelength usage efficiency of each link. To improve the same, an all-optical wavelength converter (AO-WC) has been attracting attention in recent years. In particular, an AO-WC is a key device because it enables simultaneous conversion of multiple wavelengths of signal lights to other wavelengths, independent of the modulation format. However, each AO-WC requires installation of multiple laser sources with narrow bandwidth because the lights emitted by the laser sources are used as pump lights when the wavelengths of the signal lights are converted by the four-wave mixing (FWM) process. To reduce the number of laser sources, we propose a remote pumped AO-WC, in which the laser sources of the pump lights are aggregated into several relay nodes. When the request for the wavelength conversion from the relay node without the laser source is conveyed, the relay node with the laser source transmits the pump light through the optical link. The proposed scheme enables reduction in the number of laser sources of the pump lights. Herein we analyze the distortion of the pump light by propagating it through the optical link We also evaluate the effect of the noise in optical amplifiers and nonlinearities in optical fibers using numerical simulations employing the representative parameters for a practical WDM network.

  • An Optimized Algorithm for Dynamic Routing and Wavelength Assignment in WDM Networks with Sparse Wavelength Conversion

    Liangrui TANG  Sen FENG  Jianhong HAO  Bin LI  Xiongwen ZHAO  Xin WU  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E98-B No:2
      Page(s):
    296-302

    The dynamic routing and wavelength assignment (RWA) problem in wavelength division multiplexing (WDM) optical networks with sparse wavelength conversion has been a hot research topic in recent years. An optimized algorithm based on a multiple-layered interconnected graphic model (MIG) for the dynamic RWA is presented in this paper. The MIG is constructed to reflect the actual WDM network topology. Based on the MIG, the link cost is given by the conditions of available lightpath to calculate an initial solution set of optimal paths, and by combination with path length, the optimized solution using objective function is determined. This approach simultaneously solves the route selection and wavelength assignment problem. Simulation results demonstrate the proposed MIG-based algorithm is effective in reducing blocking probability and boosting wavelength resource utilization compared with other RWA methods.

  • Accurate Modeling of Wavelength Conversion by Dynamic Tuning of a Dielectric Cavity

    Yoshinori INOUE  Hisayoshi FUJIKAWA  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    645-652

    We propose an accurate modeling of the wavelength conversion process by dynamic tuning of a dielectric cavity. Since the process involves the long-distance propagation of light, the finite-difference time-domain (FDTD) method is not suitable for modeling of the wavelength conversion process owing to the numerical dispersion error of the FDTD method. The proposed modeling is based on the constrained interpolation profile (CIP) method, which was developed in the field of computational fluid dynamics for the purpose of reducing considerably the numerical dispersion error, and is formulated for a one-dimensional problem using an interpolation function of a higher order than that used in the original CIP method. Numerical experiments reveal that the proposed method can achieve accurate prediction of the wavelength conversion process even with a coarse grid model and is superior to both the original CIP method and the FDTD method.

  • Experimental Demonstration of an Optical Packet and Circuit Integrated Ring Network Interoperated with WSON

    Takaya MIYAZAWA  Hideaki FURUKAWA  Naoya WADA  Hiroaki HARAI  

     
    PAPER

      Vol:
    E97-B No:7
      Page(s):
    1325-1333

    We experimentally demonstrate an optical packet and circuit integrated (OPCI) ring network interoperated with a wavelength-switched optical network (WSON) in a network domain. OPCI network and WSON have distinct characteristics from each other: the methods to transfer path control messages and the protocols to set up or delete the optical connections in an optical circuit switch. To interoperate the two types of optical networks, we develop a common path control-plane which can establish or release an end-to-end path by only one autonomous distributed signaling process without stitching. In the common path control-plane, we modify the signaling protocol for OCS so that we can allocate a distinct wavelength to each link on an end-to-end path and also allocate a distinct path route to each of downstream and upstream directions in a bi-directional path. We experimentally show that the common path control-plane can dynamically establish end-to-end paths over the heterogeneous network including the two types of optical networks.

  • Monolithically Integrated Wavelength-Routing Switch Using Tunable Wavelength Converters with Double-Ring-Resonator Tunable Lasers Open Access

    Toru SEGAWA  Shinji MATSUO  Takaaki KAKITSUKA  Yasuo SHIBATA  Tomonari SATO  Yoshihiro KAWAGUCHI  Yasuhiro KONDO  Ryo TAKAHASHI  

     
    PAPER-Optoelectronics

      Vol:
    E94-C No:9
      Page(s):
    1439-1446

    We present an 88 wavelength-routing switch (WRS) that monolithically integrates tunable wavelength converters (TWCs) and an 88 arrayed-waveguide grating. The TWC consists of a double-ring-resonator tunable laser (DRR TL) allowing rapid and stable switching and a semiconductor-optical-amplifier-based optical gate. Two different types of dry-etched mirrors form the laser cavity of the DRR TL, which enable integration of the optical components of the WRS on a single chip. The monolithic WRS performed 18 high-speed wavelength routing of a non-return-to-zero signal at 10 Gbit/s. The switching operation was demonstrated by simultaneously using two adjacent TWCs.

  • Self-Routing Nonblocking WDM Switches Based on Arrayed Waveguide Grating

    Yusuke FUKUSHIMA  Xiaohong JIANG  Achille PATTAVINA  Susumu HORIGUCHI  

     
    PAPER-Switching for Communications

      Vol:
    E92-B No:4
      Page(s):
    1173-1182

    Arrayed waveguide grating (AWG) is a promising technology for constructing high-speed large-capacity WDM switches, because it can switch fast, is scalable to large size and consumes little power. To take the full advantage of high-speed AWG, the routing control of a massive AWG-based switch should be as simple as possible. In this paper, we focus on the self-routing design of AWG-based switches with O(1) constant routing complexity and propose a novel construction of self-routing AWG switches that can guarantee the attractive nonblocking property for both the wavelength-to-wavelength and wavelength-to-fiber request models. We also fully analyze the proposed design in terms of its blocking property, hardware cost and crosstalk performance and compare it against traditional designs. It is expected that the proposed construction will be useful for the design and all-optical implementation of future ultra high-speed optical packet/burst switches.

  • Simultaneous Tunable Wavelength Conversion and Power Amplification Using a Pump-Modulated Wide-Band Fiber Optical Parametric Amplifier

    Guo-Wei LU  Kazi Sarwar ABEDIN  Tetsuya MIYAZAKI  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E91-B No:11
      Page(s):
    3712-3714

    We propose and experimentally demonstrate an all-optical broadband wavelength conversion scheme with simultaneous power amplification based on a pump-modulated fiber optic parametric amplifier (FOPA). All-optical tunable wavelength conversion from one to two wavelengths was achieved with ≥13 dB extinction ratio and <2.7-dB power penalty, accompanied by a high (≥37 dB) and flat ( 3 dB variation) FOPA gain spectrum over 47 nm.

  • Multi-Stage Wavelength Conversion by Cascaded SSB Modulators

    Toshihito FUJIWARA  Koji KIKUSHIMA  

     
    LETTER-Lasers, Quantum Electronics

      Vol:
    E91-C No:10
      Page(s):
    1702-1705

    We present the first demonstration of multiple-stage wavelength conversion using cascaded LiNbO3 Mach-Zehnder SSB modulators. Wavelength is accurately shifted by 18 GHz at each stage. 72 GHz frequency shift with the relative intensity noise (RIN) value of -144.5 dB/Hz is achieved by four stages. The achieved equivalent noise figure is 7.5 dB.

  • Silicon Photonics Research in Hong Kong: Microresonator Devices and Optical Nonlinearities

    Andrew W. POON  Linjie ZHOU  Fang XU  Chao LI  Hui CHEN  Tak-Keung LIANG  Yang LIU  Hon K. TSANG  

     
    INVITED PAPER

      Vol:
    E91-C No:2
      Page(s):
    156-166

    In this review paper we showcase recent activities on silicon photonics science and technology research in Hong Kong regarding two important topical areas--microresonator devices and optical nonlinearities. Our work on silicon microresonator filters, switches and modulators have shown promise for the nascent development of on-chip optoelectronic signal processing systems, while our studies on optical nonlinearities have contributed to basic understanding of silicon-based optically-pumped light sources and helium-implanted detectors. Here, we review our various passive and electro-optic active microresonator devices including (i) cascaded microring resonator cross-connect filters, (ii) NRZ-to-PRZ data format converters using a microring resonator notch filter, (iii) GHz-speed carrier-injection-based microring resonator modulators and 0.5-GHz-speed carrier-injection-based microdisk resonator modulators, and (iv) electrically reconfigurable microring resonator add-drop filters and electro-optic logic switches using interferometric resonance control. On the nonlinear waveguide front, we review the main nonlinear optical effects in silicon, and show that even at fairly modest average powers two-photon absorption and the accompanied free-carrier linear absorption could lead to optical limiting and a dramatic reduction in the effective lengths of nonlinear devices.

  • Monolithically Integrated Mach-Zehnder Interferometer All-Optical Switches by Selective Area MOVPE

    Xueliang SONG  Naoki FUTAKUCHI  Daisuke MIYASHITA  Foo Cheong YIT  Yoshiaki NAKANO  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E89-C No:7
      Page(s):
    1068-1079

    We achieved first dynamic all-optical signal processing with a bandgap-engineered MZI SOA all-optical switch. The wide-gap Selective Area Growth (SAG) technique was used to provide multi-bandgap materials with a single step epitaxy. The maximum photoluminescence (PL) peak shift obtained between the active region and the passive region was 192 nm. The static current switching with the fabricated switch indicated a large carrier induced refractive index change; up to 14 π phase shift was obtained with 60 mA injection in the SOA. The carrier recovery time of the SOA for obtaining a phase shift of π was estimated to be 250-300 ps. A clear eye pattern was obtained in 2.5 Gbps all-optical wavelength conversion. This is the first all-optical wavelength conversion demonstration with a bandgap-engineered PIC with either selective area growth or quantum-well intermixing techniques.

  • 763-nm Laser Light Source for Oxygen Monitoring Using Second Harmonic Generation in Direct-Bonded Quasi-Phase-Matched LiNbO3 Ridge Waveguide

    Osamu TADANAGA  Masaki ASOBE  Yoshiki NISHIDA  Hiroshi MIYAZAWA  Kaoru YOSHINO  Hiroyuki SUZUKI  

     
    LETTER-Lasers, Quantum Electronics

      Vol:
    E89-C No:7
      Page(s):
    1115-1117

    We fabricate a 763-nm laser module based on second-harmonic generation using a direct-bonded quasi-phase-matched LiNbO3 ridge waveguide. We obtained a 0.84-mW output of 763 nm light using a 1526-nm distributed-feedback laser diode. We also demonstrate O2 gas detection using the module output.

  • Dimensioning Models of Shared Resources for Optical Packet Switching in Unbalanced Input/Output Traffic Scenarios

    Vincenzo ERAMO  Marco LISTANTI  Luca Silvio BOVO  

     
    PAPER-Switching for Communications

      Vol:
    E89-B No:5
      Page(s):
    1505-1516

    This paper compares selected Optical Packet Switching architectures that use the wavelength conversion technique to solve the packet contention problem. The architectures in question share wavelength converters, which are needed to wavelength translate arriving packets. This paper focuses on two architectures: the Shared Per Output Line (SPOL) and the Shared Per Input Line (SPIL) architectures, in which the wavelength converters are shared per output and input fiber respectively. The performance of the proposed architectures is evaluated for all the balance/unbalance combinations of input/output traffic. Packet loss probability is expressed as a function of the number of wavelength converters used, by means of analytical models validated by simulations. The results obtained show that the SPIL architecture, when compared to the SPOL architecture, allows for greater economies in terms of number of wavelength converters needed. While the performance of the two architectures tends to have similar values in a scenario with unbalanced input traffic and balanced output traffic, in unbalanced output traffic scenarios the SPIL architecture requires about 50% less wavelength converters than the SPOL architecture does, for a given packet loss probability.

  • Converter-Aware Wavelength Assignment in WDM Networks with Limited-Range Conversion Capability

    Quang-Dzung HO  Man-Seop LEE  

     
    PAPER-Switching for Communications

      Vol:
    E89-B No:2
      Page(s):
    436-445

    In wavelength-routed optical networks, wavelength converters are considered as one of the most critical network resources because they can significantly reduce the blocking probability, but still remain quite expensive. Unfortunately, previous wavelength assignment algorithms have seldom considered their presence. Therefore, in this paper, we propose a novel dynamic algorithm that can minimize the number of wavelength translations. Our algorithm establishes lightpaths by connecting a minimum number of wavelength-continuous segments. We mathematically prove the correctness of our algorithm. Then, we carry out extensive performance evaluations over three typical topologies with full-range or limited-range converters to compare our proposed algorithm with first-fit and most-used algorithms. The simulations show that, to obtain similar blocking performance, our algorithm requires much fewer converters, or the same number of converters but with smaller conversion ranges. From another perspective, with the same conversion capacity, our algorithm can significantly improve the blocking performance. Our algorithm is also scalable due to its polynomial time complexity and insignificant local signaling overhead.

  • Automatically-Controlled C-Band Wavelength Conversion with Constant Output Power Based on Four-Wave Mixing in SOA's

    Koji OTSUBO  Tomoyuki AKIYAMA  Haruhiko KUWATSUKA  Nobuaki HATORI  Hiroji EBE  Mitsuru SUGAWARA  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E88-C No:12
      Page(s):
    2358-2365

    We demonstrate the C-band wavelength conversion unit having functions of automatic wavelength recognition, power equalization, and elimination of original signal and pumping light for the first time, which is based on four-wave mixing (FWM) in semiconductor optical amplifiers (SOA's). The constructed unit automatically detects signal wavelength, sweeps wavelength of a pumping light, and adjusts center wavelengths of band pass filters and gain values of erbium-doped fiber amplifiers (EDFA's), in order to convert the wavelength of the signal to the arbitrary wavelength we set, and eliminate the original signal and pumping light after conversion. Amplification of the signal, pumping, and wavelength-converted lights compensates the detuning dependence of conversion efficiency and its asymmetry in the quantum-well (QW) SOA, to keep the power of the wavelength-converted light constant within the whole C-band region. The switching time of wavelength conversion by the unit is about a second, which is dominated by mechanical movement of the tunable filters. Wavelength-converted 2.5 and 10 Gb/s NRZ signals show clear eye-openings when the detuning is positive (ωp > ωs), and a 2-ps pulse train is also successfully wavelength-converted. To overcome the problem of the asymmetric conversion efficiency in the QW-SOA, we adopted quantum-dot (QD) SOA's. Although the 1.5 µm QD-SOA still shows its asymmetry, which will be improved by optimization of quantum dot structure, wavelength conversion of a 160 Gb/s RZ signal is demonstrated by the QD-SOA's. More improvement of the performance of the wavelength conversion unit should be possible by making switching time faster and installing the optimized QD-SOA's.

  • Dynamic RWA Based on the Combination of Mobile Agents Technique and Genetic Algorithms in WDM Networks with Sparse Wavelength Conversion

    Vinh Trong LE  Xiaohong JIANG  Son Hong NGO  Susumu HORIGUCHI  

     
    PAPER

      Vol:
    E88-D No:9
      Page(s):
    2067-2078

    Genetic Algorithms (GA) provide an attractive approach to solving the challenging problem of dynamic routing and wavelength assignment (RWA) in optical Wavelength Division Multiplexing (WDM) networks, because they usually achieve a significantly low blocking probability. Available GA-based dynamic RWA algorithms were designed mainly for WDM networks with a wavelength continuity constraint, and they cannot be applied directly to WDM networks with wavelength conversion capability. Furthermore, the available GA-based dynamic RWA algorithms suffer from the problem of requiring a very time consuming process to generate the first population of routes for a request, which may results in a significantly large delay in path setup. In this paper, we study the dynamic RWA problem in WDM networks with sparse wavelength conversion and propose a novel hybrid algorithm for it based on the combination of mobile agents technique and GA. By keeping a suitable number of mobile agents in the network to cooperatively explore the network states and continuously update the routing tables, the new hybrid algorithm can promptly determine the first population of routes for a new request based on the routing table of its source node, without requiring the time consuming process associated with current GA-based dynamic RWA algorithms. To achieve a good load balance in WDM networks with sparse wavelength conversion, we adopt in our hybrid algorithm a new reproduction scheme and a new fitness function that simultaneously takes into account the path length, number of free wavelengths, and wavelength conversion capability in route selection. Our new hybrid algorithm achieves a better load balance and results in a significantly lower blocking probability than does the Fixed-Alternate routing algorithm, both for optical networks with sparse and full-range wavelength converters and for optical networks with sparse and limited-range wavelength converters. This was verified by an extensive simulation study on the ns-2 network simulator and two typical network topologies. The ability to guarantee both a low blocking probability and a small setup delay makes the new hybrid dynamic RWA algorithm very attractive for current optical circuit switching networks and also for the next generation optical burst switching networks.

  • Improvement of Input Power Dynamic Range and Extinction Ratio for Wavelength Converters Based on Cross-Gain Modulation

    Joon-Hak BANG  Je-Soo KO  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E88-B No:8
      Page(s):
    3455-3457

    A technique for improving the input power dynamic range and extinction ratio of wavelength converters based on cross-gain modulation in a semiconductor optical amplifier is presented.

  • Optical WDM Multicasting Design under Wavelength Conversion Constraints

    Hiroaki HONDA  Hideki TODE  Koso MURAKAMI  

     
    PAPER-Optical Network Architecture

      Vol:
    E88-B No:5
      Page(s):
    1890-1897

    In the next-generation networks, ultra high-speed data transmission will become necessary to support a variety of advanced point-to-point and multipoint multimedia services with stringent quality-of-service (QoS) constraints. Such a requirement desires the realization of optical WDM networks. Researches on multicast in optical WDM networks have become active for the purpose of efficient use of wavelength resources. Since multiple channels are more likely to share the same links in WDM multicast, effective routing and wavelength assignment (RWA) technology becomes very important. The introduction of the wavelength conversion technology leads to more efficient use of wavelength resources. This technology, however, has problems to be solved, and the number of wavelength converters will be restricted in the network. In this paper, we propose an effective WDM multicast design method on condition that wavelength converters on each switching node are restricted, which consists of three separate steps: routing, wavelength converter allocation, and wavelength assignment. In our proposal, preferentially available waveband is classified according to the scale of multicast group. Assuming that the number of wavelength converters on each switching node is limited, we evaluate its performance from a viewpoint of the call blocking probability.

  • Theoretical Study of Assist Light Effect on XGM and XPM-Based Wavelength-Conversion Using SOAs

    Kenichiro TSUJI  Takuya WATANABE  Noriaki ONODERA  Masatoshi SARUWATARI  

     
    PAPER-Optical Active Devices and Modules

      Vol:
    E88-C No:5
      Page(s):
    973-980

    For wavelength conversion based on cross-gain modulation (XGM) and cross-phase modulation (XPM) in semiconductor optical amplifiers (SOAs), a CW assist light is quite effective for acceleration of carrier recovery and reduction of pattern effects. We theoretically study assist light conditions both for XGM- and XPM-based wavelength conversion by numerically simulating eye-diagrams. Taking into account the spatial and temporal variations of carrier density along the SOA length, we successfully clarify the dependences of wavelength, power, and propagation direction of the assist light, and reveal the principal difference of response characteristics between XGM and XPM depending on carrier modulation.

1-20hit(47hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.