Author Search Result

[Author] Hiroki SUTO(4hit)

1-4hit
  • A 0.25 µm CMOS/SIMOX PLL Clock Generator Embedded in a Gate Array LSI with a Locking Range of 5 to 500 MHz

    Hiroki SUTOH  Kimihiro YAMAKOSHI  

     
    PAPER-Integrated Electronics

      Vol:
    E82-C No:7
      Page(s):
    1334-1340

    This paper describes a wide-frequency-range phase-locked-loop (PLL) clock generator embedded in a gate array LSI using 0.25 µm CMOS/SIMOX technology. The four ratios of internal clock frequency to external clock frequency this generator supports are 2, 4, 8, and 16. The PLL has two kinds of voltage-controlled oscillators that are selected automatically according to the frequency so as to widen the operating frequency range while keeping jitter low. Measured results show that the PLL operates with a lock range from 5 to 500 MHz. At 500 MHz, the peak-to-peak jitter is 50 ps. The supply voltage is 2 V and power dissipation is less than 14 mW. At a supply voltage of 2 V, the maximum operating frequency of 0.25 µm CMOS/SIMOX PLL is 30% higher than that of 0.25 µm bulk CMOS PLL.

  • A Clock Distribution Technique with an Automatic Skew Compensation Circuit

    Hiroki SUTOH  Kimihiro YAMAKOSHI  

     
    PAPER-Integrated Electronics

      Vol:
    E81-C No:2
      Page(s):
    277-283

    This paper describes a low-skew clock distribution technique for multiple targets. An automatic skew compensation circuit, that detects the round-trip delay through a pair of matched interconnection lines and corrects the delay of the variable delay lines, maintains clock skew and delay from among multiple targets below the resolution time of the variable delay lines without any manual adjustment. Measured results show that the initial clock skew of 900 ps is automatically reduced to 30 ps at a clock frequency of up to 250 MHz with 60 ps of clock jitter. Moreover, they show that the initial clock delay of 1500 ps is cancelled and 60 ps of clock delay can be achieved. The power dissipation is 100 mW at 250 MHz.

  • An Adaptive Fingerprint-Sensing Scheme for a User Authentication System with a Fingerprint Sensor LSI

    Hiroki MORIMURA  Satoshi SHIGEMATSU  Toshishige SHIMAMURA  Koji FUJII  Chikara YAMAGUCHI  Hiroki SUTO  Yukio OKAZAKI  Katsuyuki MACHIDA  Hakaru KYURAGI  

     
    PAPER-Integrated Electronics

      Vol:
    E87-C No:5
      Page(s):
    791-800

    This paper describes an adaptive fingerprint-sensing scheme for a user authentication system with a fingerprint sensor LSI to obtain high-quality fingerprint images suitable for identification. The scheme is based on novel evaluation indexes of fingerprint-image quality and adjustable analog-to-digital (A/D) conversion. The scheme adjusts dynamically an A/D conversion range of the fingerprint sensor LSI while evaluating the image quality during real-time fingerprint-sensing operation. The evaluation indexes pertain to the contrast and the ridgelines of a fingerprint image. The A/D conversion range is adjusted by changing quantization resolution and offset. We developed a fingerprint sensor LSI and a user authentication system to evaluate the adaptive fingerprint-sensing scheme. The scheme obtained a fingerprint image suitable for identification and the system achieved an accurate identification rate with 0.36% of the false rejection rate (FRR) at 0.075% of the false acceptance rate (FAR). This confirms that the scheme is very effective in achieving accurate identification.

  • A 31 GHz Static Frequency Divider Using Au/WSiN Gate GaAs MESFETs

    Masami TOKUMITSU  Kiyomitsu ONODERA  Hiroki SUTOH  Kazuyoshi ASAI  

     
    PAPER

      Vol:
    E74-C No:12
      Page(s):
    4136-4140

    A divide-four static frequency divider is fabricated to evaluate the ultra-high-speed performance of Au/WSiN gate GaAs MESFETs. The divider consists of two T-type flip-flops (T-F/F) ans three buffers based on low-power source-coupled FET logic (LSCFL). The divider operates up to 31.4 GHz at room temperature at power dissipation of 150 mW per T-F/F using Au/WSiN gate GaAs MESFETs well scaled down to 0.3 µm gate-length.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.