Author Search Result

[Author] Hiroyuki SHIBA(10hit)

1-10hit
  • Software Defined Radio Prototype for PHS and IEEE 802.11 Wireless LAN

    Hiroyuki SHIBA  Takashi SHONO  Yushi SHIRATO  Ichihiko TOYODA  Kazuhiro UEHARA  Masahiro UMEHIRA  

     
    PAPER

      Vol:
    E85-B No:12
      Page(s):
    2694-2702

    A software defined radio (SDR) prototype based on a multiprocessor architecture (MPA) is developed. Software for Japanese personal handy phone system (PHS) of a 2G mobile system, and IEEE 802.11 wireless LAN, which has much wider bandwidth than the 2G systems, is successfully implemented. Newly developed flexible-rate pre-/ post-processor (FR-PPP) achieves the flexibility and wideband performance that the platform needs. This paper shows the design of the SDR prototype and evaluates its performance by experiments that include PHS processor load and wireless LAN throughput characteristics and processor load.

  • A 2.4-GHz Temperature-Compensated CMOS LC-VCO for Low Frequency Drift Low-Power Direct-Modulation GFSK Transmitters

    Toru TANZAWA  Kenichi AGAWA  Hiroyuki SHIBAYAMA  Ryota TERAUCHI  Katsumi HISANO  Hiroki ISHIKURO  Shouhei KOUSAI  Hiroyuki KOBAYASHI  Hideaki MAJIMA  Toru TAKAYAMA  Masayuki KOIZUMI  Fumitoshi HATORI  

     
    PAPER-Analog

      Vol:
    E88-C No:4
      Page(s):
    490-495

    A frequency drift of open-loop PLL is an issue for the direct-modulation applications such as Bluetooth transceiver. The drift mainly comes from a temperature variation of VCO during the transmission operation. In this paper, we propose the optimum location of the VCO, considering the temperature gradient through the whole-chip thermal analysis. Moreover, a novel temperature-compensated VCO, employing a new biasing scheme, is proposed. The combination of these two techniques enables the power reduction of the transmitter by 33% without sacrificing the performance.

  • 26 GHz Band Extremely Low-Profile Front-End Configuration Employing Integrated Modules of Patch Antennas and SIW Filters

    Yasunori SUZUKI  Takana KAHO  Kei SATOH  Hiroshi OKAZAKI  Maki ARAI  Yo YAMAGUCHI  Shoichi NARAHASHI  Hiroyuki SHIBA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E100-C No:12
      Page(s):
    1097-1107

    This paper presents an extremely low-profile front-end configuration for a base station at quasi-millimeter wave band. It consists of integrated modules of patch antennas and substrate integrated waveguide filters using two printed circuit boards, and transmitter modules using compact GaAs pHEMT three-dimensional monolithic millimeter-wave integrated circuits. The transmitter modules are located around the integrated modules. This is because the proposed front-end configuration can attain extremely low profile, and band-pass filtering performance at quasi-millimeter wave band. As a demonstration of the proposed configuration, 26-GHz-band 4-by-4 elements front-end module is fabricated and tested. The fabricated module has the thickness of about 1 cm, while that offers the attenuation of more than 30 dB with 2 GHz offset from 26 GHz. The proposed configuration can provide base station that can be effective in offering sub-millimeter wave and millimeter-wave bands broadband services for 5G mobile communications systems.

  • Review of Superconducting Nanostrip Photon Detectors using Various Superconductors Open Access

    Hiroyuki SHIBATA  

     
    INVITED PAPER

      Pubricized:
    2021/02/24
      Vol:
    E104-C No:9
      Page(s):
    429-434

    One of the highest performing single-photon detectors in the visible and near-infrared regions is the superconducting nanostrip photon detector (SNSPD or SSPD), which usually uses NbN or NbTiN as the superconductor. Using other superconductors may significantly improve, for example, the operating temperature and count rate characteristics. This paper briefly reviews the current state of the potential, characteristics, thin film growth, and nanofabrication process of SNSPD using various superconductors.

  • Signal Separation and Reconstruction Method for Simultaneously Received Multi-System Signals in Flexible Wireless System

    Takayuki YAMADA  Doohwan LEE  Hiroyuki SHIBA  Yo YAMAGUCHI  Kazunori AKABANE  Kazuhiro UEHARA  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1085-1092

    We previously proposed a unified wireless system called “Flexible Wireless System”. Comprising of flexible access points and a flexible signal processing unit, it collectively receives a wideband spectrum that includes multiple signals from various wireless systems. In cases of simultaneous multiple signal reception, however, reception performance degrades due to the interference among multiple signals. To address this problem, we propose a new signal separation and reconstruction method for spectrally overlapped signals. The method analyzes spectral information obtained by the short-time Fourier transform to extract amplitude and phase values at each center frequency of overlapped signals at a flexible signal processing unit. Using these values enables signals from received radio wave data to be separated and reconstructed for simultaneous multi-system reception. In this paper, the BER performance of the proposed method is evaluated using computer simulations. Also, the performance of the interference suppression is evaluated by analyzing the probability density distribution of the amplitude of the overlapped interference on a symbol of the received signal. Simulation results confirmed the effectiveness of the proposed method.

  • Concurrent Multi-Band Mixer with Independent and Linear Gain Control

    Takana KAHO  Yo YAMAGUCHI  Hiroyuki SHIBA  Tadao NAKAGAWA  Kazuhiro UEHARA  Kiyomichi ARAKI  

     
    PAPER-Active Circuits/Devices/Monolithic Microwave Integrated Circuits

      Vol:
    E98-C No:7
      Page(s):
    659-668

    Novel multi-band mixers that can receive multiple band signals concurrently are proposed and evaluated. The mixers achieve independent gain control through novel relative power control method of the multiple local oscillator (LO) signals. Linear control is also achieved through multiple LO signal input with total LO power control. Theoretical analysis shows that odd-order nonlinearity components of the multiple LO signals support linear conversion gain control. Dual- and triple-band tests are conducted using typical three MOSFET mixers fabricated by a 0.25 µm SiGe BiCMOS process. Measurements confirm over 40 dB independent control of conversion gain, linear control achieved through LO input power control. The proposed mixers have high input linearity with a 5 dBm output third intercept point. A method is also proposed to reduce interference caused by mixing between multiple LO signals.

  • Combined Nyquist and Compressed Sampling Method for Radio Wave Data Compression of a Heterogeneous Network System Open Access

    Doohwan LEE  Takayuki YAMADA  Hiroyuki SHIBA  Yo YAMAGUCHI  Kazuhiro UEHARA  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3238-3247

    To satisfy the requirement of a unified platform which can flexibly deal with various wireless radio systems, we proposed and implemented a heterogeneous network system composed of distributed flexible access points and a protocol-free signal processing unit. Distributed flexible access points are remote RF devices which perform the reception of multiple types of radio wave data and transfer the received data to the protocol-free signal processing unit through wired access network. The protocol-free signal processing unit performs multiple types of signal analysis by software. To realize a highly flexible and efficient radio wave data reception and transfer, we employ the recently developed compressed sensing technology. Moreover, we propose a combined Nyquist and compressed sampling method for the decoding signals to be sampled at the Nyquist rate and for the sensing signals to be sampled at the compressed rate. For this purpose, the decoding signals and the sensing signals are converted into the intermediate band frequency (IF) and mixed. In the IF band, the decoding signals are set at lower center frequencies than those of the sensing signals. The down converted signals are sampled at the rate of four times of the whole bandwidth of the decoding signals plus two times of the whole bandwidth of the sensing signals. The purpose of above setting is to simultaneously conduct Nyquist rate and compressed rate sampling in a single ADC. Then, all of odd (or even) samples are preserved and some of even (or odd) samples are randomly discarded. This method reduces the data transfer burden in dealing with the sensing signals while guaranteeing the realization of Nyquist-rate decoding performance. Simulation and experiment results validate the efficiency of the proposed method.

  • Performance Evaluations of Communication Systems Employing Stratospheric Aircrafts and LEO Satellites

    Shigeru SHIMAMOTO  Takanori MIKOSHIBA  Shinya TAKAKUSAGI  Masatoshi HAYASHI  Hiroyuki SHIBA  

     
    PAPER-Wireless Communication Systems

      Vol:
    E81-B No:12
      Page(s):
    2343-2350

    In recent years, several global network systems using non-stationary satellites have been proposed. Some of them are announced to start services within years. We also have several experimental systems with stratospheric aircrafts. In the future, the radio communication system using stratospheric aircrafts will be one of the promising media for personal communications. The question of how to establish the optimal communication under such circumstance seems to be still open. In this paper, performance evaluations of wireless communication systems using LEO satellites and stratospheric aircrafts are proposed. We will show some proper communication parameters to improve competence of mobile communication in the such systems as well.

  • Design and Performance Evaluation of IEEE 802.11a SDR Software Implemented on a Reconfigurable Processor

    Kazunori AKABANE  Hiroyuki SHIBA  Munehiro MATSUI  Kiyoshi KOBAYASHI  Katsuhiko ARAKI  

     
    PAPER

      Vol:
    E88-B No:11
      Page(s):
    4163-4169

    Software defined radio (SDR) mobile terminals that can access multiple wireless communication systems are the trend of the future. An SDR wideband mobile terminal must be capable of high-speed data processing and low power consumption. We focused on reconfigurable processors with these features. To evaluate the performance of reconfigurable processors for SDR wideband mobile terminals, we developed and evaluated software that runs on a reconfigurable processor for the IEEE 802.11a wireless local area network (LAN) baseband part, which requires high-speed data processing. This paper describes the configuration of the SDR IEEE 802.11a software for the reconfigurable processor and its performance evaluation results. Moreover, we showed the requirements for applying the reconfigurable processor to SDR wideband mobile terminals, and confirmed that the reconfigurable processor could be applied to SDR mobile terminals by slight progresses.

  • Performance Evaluation of an Autonomous Adaptive Base Station that Supports Multiple Wireless Network Systems

    Kazunori AKABANE  Hiroyuki SHIBA  Munehiro MATSUI  Kazuhiro UEHARA  

     
    PAPER-Cognitive Network

      Vol:
    E91-B No:1
      Page(s):
    22-28

    Various wireless systems are being developed to meet users' needs, and the rapid increase in frequency demand that accompanies the increasing popularity of wireless services means that more effective use of frequency resources is urgently needed. However, existing base stations are making no effort to use frequency resources effectively, and cooperation among wireless system base stations is needed to use frequency resources more effectively. Base stations can cooperate more efficiently if they are able to use multiple channels of many wireless systems simultaneously. We propose an autonomous adaptive base station (AABS) that can switch among various wireless systems the way software defined radio (SDR) base stations do. AABS can autonomously select and use the most suitable wireless system on the basis of user traffic and its hardware resources. Moreover, frequency resources are used effectively because AABS prevents unnecessary radio wave transmission when the number of users in the wireless systems decreases. AABS is also suitable for "multi-link communication" because it can use multiple channels of multiple wireless systems simultaneously. We developed AABS prototype and evaluated its performance. Our experimental and computer simulation results show the performance of AABS and its efficiency.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.