1-6hit |
Yasuo YAMAGUCHI Jun TAKAHASHI Takehisa YAMAGUCHI Tomohisa WADA Toshiaki IWAMATSU Hans-Oliver JOACHIM Yasuo INOUE Tadashi NISHIMURA Natsuro TSUBOUCHI
The stability of a high-resistivity load SRAM cell using thin-film SOI MOSFET's was investigated as compared with bulk-Si MOSFET's. In SOI MOSFET's back-gate-bias effect was suppressed by indirect application of back-gate-bias to the channel region through the thick buried oxide. The Vt shifts were reduced to be 10% and 14% of that in bulk-Si MOSFET's in partially and fully depleted devices, respectively. The reduction of back-gate-bias effect provides improvement of "high" output voltage and gain in the enhancement-enhancement (EE) inverter in a high-resistivity load SRAM cell, thereby offering improved cell stability. It was demonstrated by using partially depleted SOI SRAM cells that non-destructive reading was obtained even at a low drain voltage of 1.4 V without gate-potential boost, which was much smaller than the operation limit in a bulk Si SRAM with the same patterns and dimensions used as a reference. This implies that SOI devices can also offer low-voltage operation even in TFT-load cells used in up-to-date high-density SRAM's. These results suggest that thin-film SOI MOSFET's have a superior potential of low-voltage operation expected for further scaled devices and/or for portable systems in a forthcoming multimedia era.
Jun TAKAHASHI Hideki TODE Koso MURAKAMI
For the efficient multicast distribution services on the Internet, suppressing the influence of packet loss is important issues. As a solution of this problem, Forward Error Correction (FEC) based on Reed-Solomon codes is usually used. However, in the case of content delivery services for a large amount of data, this approach is not suitable. In this paper, we focus on the erasure codes which are new approach of FEC and propose the efficient multicast video distribution method which combines the multicast distribution using erasure codes and direct request to the server. We implement proposal method and confirm its efficiency from the viewpoints of redundancy and processing time.
Jun TAKAHASHI Akiko NAKANIWA Yasutomo ABE Hiroyuki EBARA Hiromi OKADA
Mirroring of network servers has been considered to be effective for load balancing. However, the cost of setting up new mirror servers is enormously high. In this paper, we propose a dynamic file allocation model with a simple mirroring function for handling significant changes of network traffic in the Internet. According to the load fluctuation, we can dynamically reallocate files using this model. We show that our model accomplishes satisfactory performance and reduces cost by adding a simple mirroring function to all existent servers instead of setting up mirror servers afresh.
Jun TAKAHASHI Hideki TODE Koso MURAKAMI
Efficient real-time contents distribution services on the Internet are only possible by suppressing the influence of packet losses. One solution for UDP transmission is the use of Forward Error Correction (FEC) based on Reed-Solomon codes. However, a more efficient method is required since this causes the increase of network traffic and includes the weakness to burst packet losses. In this paper, we propose a data recovery method that generates redundant data with the combination of Reed-Solomon codes and convolution of neighboring blocks. We realize the small amount of redundancy and the high reliability in data transmission compared with using only Reed-Solomon codes in the environment that burst packet losses are occurred frequently. We implement proposal method into the network bridge and confirm its efficiency from the viewpoint of data reconstruction from burst packet losses.
Jun TAKAHASHI Hideki TODE Koso MURAKAMI
The advances in services using the present Internet mean that there will be increasing demand for Video on Demand (VoD) on the Internet in the near future. However, because of the best-effort characteristics of the Internet, it is important to suppress the degradation of communication quality caused by packet dropping when Internet traffic is congested. This paper focuses on MPEG transmission over the Internet, and suitable control mechanisms are established for an acceptable Quality of Service (QoS) improvement through detailed evaluation. Packets are classified using a frame-based scheme. The server applies the proposed End-to-End control scheme and shuffles the order of packets to avoid burst dropping, and may omit selected packets belonging to certain frames prior to forwarding. At the intermediate routers, transferred packets are transmitted according to Round Robin (RR) or Weighted Round Robin (WRR) scheduling, and are dropped statistically using selective Random Early Detection (RED) corresponding to frame attributes when there is congestion. We evaluate the proposed performance of transmission method using both computer simulations and empirical measurements of picture quality. The results show that when the traffic volume cannot be estimated in the intermediate routers, the combined use of RR, shuffling and conditional RED is effective, and when the traffic volume can be estimated, the combination of WRR, rate control and RED is effective.
Akiko NAKANIWA Jun TAKAHASHI Hiroyuki EBARA Hiromi OKADA
In this paper, we consider optimal mirror allocation problems for the purpose of load balancing in network servers. We focus on constructing high-reliability networks and propose the optimal mirror allocation model such that the system reliability is maximized subject to costs and delays, in view of the trade-off between the reliability and cost. This optimization model is capable of dealing with various kinds of network topologies, although for simplicity, we assume the read-only situation. We formulate this optimization problem into a 0-1 integer programming model, and we use an approximate method for numerical analysis in order to analyze more large-scale systems. Our objective is to find the optimal mirror allocation by solving this model, and to show quantitatively the general characteristics of the load balancing and the improvement of the system reliability by the distributed mirror allocation.