1-5hit |
Masahiro ISHIMORI Minoru SASAKI Kazuhiro HANE
A micromirror for an external cavity diode laser is described. The mirror is supported by two sets of parallel torsion bars enabling piston motion as well as rotation. These motions are for realizing continuous wavelength tuning. Adjusting two rotations electrically, the pivot of the mirror rotation can be controlled. The long stroke of the vertical comb is realized by the deep three-dimensional structure prepared by the wafer bending method.
Minoru SASAKI Masahiro ISHIMORI JongHyeong SONG Kazuhiro HANE
An electrostatically driven micromirror is described. The vertical comb of a three-dimensional microstructure is realized by bending the device wafer having microstructures. By resetting the bending angle, the tuning of the vertical gap between moving and stationary combs is possible. The characteristics of the vertical comb drive actuator can be tuned, confirming the performance.
Kazuhiko TAKAHASHI Minoru SASAKI
A method is presented for implementing a neural control system for controlling a piezopolymer bimorph flexible micro-actuator. Two neural controllers were constructed, both with an adaptive-type neural identifier and a learning-type direct or open-loop neural controller, focusing on the difference in learning speed between the adaptive and learning schemes. Simulated use of the proposed controllers to control a flexible micro-actuator showed that they can do so effectively. Experiments also demonstrated that a neural controller can be used to control a flexible micro-actuator.
Kazuhiro HANE Minoru SASAKI JongHyeong SONG Yohei TAGUCHI Kosuke MIURA
Fiber-optic MEMS which is fabricated by combining direct photo-lithography of optical fiber and silicon micro-machining is proposed. Preliminary results of micro-machining of optical fiber and variable telecommunication devices are presented.
Tsutomu MATSUMOTO Youichi TAKASHIMA Hideki IMAI Minoru SASAKI Hiroharu YOSHIKAWA Shin-ichiro WATANABE
This paper demonstrates and confirms that a large-network-oriented key sharing method called the key predistribution system (KPS) is really practical and useful for supporting end-to-end cryptographic communication, by presenting a prototype implementation of KPS using special IC cards and its application to facsimile systems. This prototype can build a secure channel over any ordinary facsimile network using the following types of equipments: (1) an IC card implementing a linear scheme for KPS and the DES algorithm, (2) an adaptor-type interface device between the IC card and a facsimile terminal with no cryptographic function, and (3) a device for each managing center of KPS.