Author Search Result

[Author] Naoto KADOWAKI(4hit)

1-4hit
  • A Proposal on Satellite Hitchhiker Payload for Pan-Pacific Information Network

    Takashi IIDA  Naoto KADOWAKI  Hisashi MORIKAWA  Kimio KONDO  Ryutaro SUZUKI  Yoshiaki NEMOTO  

     
    REVIEW PAPER

      Vol:
    E76-B No:5
      Page(s):
    457-465

    A non-profit satellite communication network is desired to be configured by using low cost earth stations in the field of education, research and health in the Pacific region. This paper proposes the following concept as one of the tools to realize such a network: (a) A hitchhiker transponder dedicated to the network, and (b) The volunteer group prepares earth stations. A preliminary system design shows that the S band hitchhiker payload is most appropriate and has the weight of about 3kg. The feasibility of manufacturing earth stations by a volunteer group is examined through the experiment using ETS-V satellite. The parameters of the hitchhiker payload are re-examined on the basis of the experience of the experiment.

  • An 18 GHz-Band MMIC Diode Linearizer Using a Parallel Capacitor with a Bias Feed Resistance

    Kazuhisa YAMAUCHI  Masatoshi NAKAYAMA  Yukio IKEDA  Akira AKAISHI  Osami ISHIDA  Naoto KADOWAKI  

     
    PAPER

      Vol:
    E86-C No:8
      Page(s):
    1486-1493

    An 18 GHz-band Microwave Monolithic Integrated Circuit (MMIC) diode linearizer using a parallel capacitor with a bias feed resistance is presented. The newly employed parallel capacitor is able to control gain and phase deviations of the linearizer. This implies that the gain deviation of the linearizer can be controlled without changing the phase deviation. The presented linearizer can compensate the distortion of an amplifier sufficiently. The operation principle of the linearizer with the parallel capacitor is investigated. It is clarified that the gain deviation can be adjusted without changing the phase deviation by using the parallel capacitor. Two variable gain buffer amplifiers and the core part of the linearizer which consists of a diode, a bias feed resistor, and a capacitor are fabricated on the MMIC chip. The amplifiers cancel the frequency dependence of the core part of the linearizer to improve bandwidth of the MMIC. Further, the amplifiers contribute to earn low reflection and compensate insertion loss of the linearizer. The MMIC chip is size of 2.5 mm 1 mm. The linearizer has demonstrated improvement of 3rd Inter-Modulation Distortion (IMD3) of 12 dB at 18 GHz and improvement of more than 6 dB between 17.8 GHz and 18.6 GHz.

  • Research and Development Issues of Satellite Communications Systems for Large Scale Disaster Relief Open Access

    Naoto KADOWAKI  Takashi TAKAHASHI  Maki AKIOKA  Yoshiyuki FUJINO  Morio TOYOSHIMA  

     
    INVITED PAPER

      Vol:
    E95-B No:11
      Page(s):
    3378-3384

    It is well known that satellite communications systems are effective and essential communication infrastructure for disaster relief. NICT sent researchers to Tsunami stricken area in March right after the Great East Japan Earthquake and provided broadband satellite communications link to support rescue activities. Through this experience, we learned many kinds of requirements of communications for such purposes. In this paper, we list up the requirements and report what kind of satellite communications technologies are needed, and research and development issues.

  • Mobility Prediction Progressive Routing (MP2R), a Cross-Layer Design for Inter-Vehicle Communication

    Suhua TANG  Naoto KADOWAKI  Sadao OBANA  

     
    PAPER-Network

      Vol:
    E91-B No:1
      Page(s):
    221-231

    In this paper we analyze the characteristics of vehicle mobility and propose a novel Mobility Prediction Progressive Routing (MP2R) protocol for Inter-Vehicle Communication (IVC) that is based on cross-layer design. MP2R utilizes the additional gain provided by the directional antennas to improve link quality and connectivity; interference is reduced by the directional transmission. Each node learns its own position and speed and that of other nodes, and performs position prediction. (i) With the predicted progress and link quality, the forwarding decision of a packet is locally made, just before the packet is actually transmitted. In addition the load at the forwarder is considered in order to avoid congestion. (ii) The predicted geographic direction is used to control the beam of the directional antenna. The proposed MP2R protocol is especially suitable for forwarding burst traffic in highly mobile environments. Simulation results show that MP2R effectively reduces Packet Error Ratio (PER) compared with both topology-based routing (AODV [1], FSR [2]) and normal progressive routing (NADV [18]) in the IVC scenarios.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.