1-5hit |
Hiromi SHIMAMOTO Masamichi TANABE Takahiro ONAI Katsuyoshi WASHIO Tohru NAKAMURA
The degradation of I-V characteristics under constant emitter-base reverse voltage stress in advanced self-aligned bipolar transistors was analyzed. Experimental analyses have been taken the stress field effect into account when predicting hot-carrier degradation. These analyses showed that base current starts to increase when the reverse voltage stress is about 3 V. The dependence of the base current change on reverse voltages of more than 3 V was also investigated experimentally, and equations expressing hot-carrier degradation in terms of the exponential dependence of excess base current on both reverse stress voltage and stress-enhancing voltage related to emitter-base breakdown voltage were derived.
Youji IDEI Takeo SHIBA Noriyuki HOMMA Kunihiko YAMAGUCHI Tohru NAKAMURA Takahiro ONAI Youichi TAMAKI Yoshiaki SAKURAI
This paper describes a new soft-error-immune SICOS upward transistor memory cell suitable for ultra-high-speed bipolar RAMs. A cell size of 180 µm2, significantly smaller than the 500 µm2 in the conventional upward transistor cell, is achieved by marging an upward transistor and a Shottky barrier diode. A new very thin polysilicon resistor and 0.5-µm U-groove isolated SICOS technology are used to furher reduce cell size. The memory cell is about 105 times as immune to soft errors as downward transistor cells. A simulation shows that a 256-Kbit RAM with a write cycle time below 3 ns can be made using this memory cell.
Tohru NAKAMURA Takeo SHIBA Takahiro ONAI Takashi UCHINO Yukihiro KIYOTA Katsuyoshi WASHIO Noriyuki HOMMA
Recent high-speed bipolar technologies based on SICOS (Sidewall Base Contact Structure) transistors are reviewed. Bipolar device structures that include polysilicon are key technologies for improving circuit characteristics. As the characteristics of the upward operated SICOS transistors are close to those of downward transistors, they can easily be applied in memory cells which have near-perfect soft-error-immunity. Newly developed process technologies for making shallow base and emitter junctions to improve circuit performance are also reviewed. Finally, complementary bipolar technology for low-power and high-speed circuits using pnp transistors, and a quasi-drift base transistor structure suitable for below 0.1 µm emitters are discussed.
Hiromi SHIMAMOTO Takahiro ONAI Eiji OHUE Masamichi TANABE Katsuyoshi WASHIO
A high-frequency, low-noise silicon bipolar transistor that can be used in over-10 Gb/s optical communication systems and wireless communication systems has been developed. The silicon bipolar transistor was fabricated using self-aligned metal/IDP (SMI) technology, which produces a self-aligned base electrode of stacked layers of metal and in-situ doped poly-Si (IDP) by low-temperature selective tungsten CVD. It provides a low base resistance and high-cutoff frequency. The base resistance is reduced to half that of a transistor with a conventional poly-Si base electrode. By using the SMI technology and optimizing the depth of the emitter and the link base, we achieved the maximum oscillation frequency of 80 GHz, a minimum gate delay in an ECL of 11.6 ps, and the minimum noise figure of 0.34 dB at 2 GHz, which are the highest performances among those obtained from ion-implanted base Si bipolar transistors, and are comparable to those of SiGe base heterojunction bipolar transistors.
Masamichi TANABE Hiromi SHIMAMOTO Takahiro ONAI Katsuyoshi WASHIO
A simplified distribution base resistance model (SDM) is proposed to identify each component of the base resistance and determine the dominant. This model divides the parasitic base resistance into one straight path and two surrounding paths. It is clarified that the link base resistance is dominant in a short emitter and the surrounding polysilicon base electrode resistance is dominant in a long emitter. In the SDM, the distance of the link base is reduced to half; with metal silicide as the extrinsic base electrode, the base resistance will be reduced to 75%.