1-2hit |
Takayuki FURUTA Atsushi FUKUDA Hiroshi OKAZAKI Shoichi NARAHASHI
This paper presents a novel isolator that employs a varactor that tunes the operating frequency for use in future multi-band mobile handsets. The proposed isolator employs only one varactor for compactness and has a three-fold symmetric structure to reduce the parasitic reactance at each port. Analytical and experimental results clarify the tuning range of the proposed isolator. This paper presents the fundamental characteristics of the proposed isolator such as the insertion loss, isolation, and adjacent channel leakage ratio (ACLR) using a W-CDMA signal. The impact of the proposed isolator on the system performance is described based on experimental evaluation of the ACLR with a multi-band transmission system consisting of a power amplifier and the proposed isolator.
Atsushi FUKUDA Takayuki FURUTA Hiroshi OKAZAKI Shoichi NARAHASHI Toshio NOJIMA
This paper presents a novel design scheme for a band-switchable multi-band power amplifier (BS-MPA). A key point of the design scheme is configuring multi-section reconfigurable matching networks (MR-MNs) optimally in terms of low loss matching in multiple frequency bands from 0.7 to 2.5 GHz. The MR-MN consists of several matching sections, each of which has a matching block connected to a transmission line via a switch. Power dissipation at an actual on-state switch results in the insertion loss of the MR-MN and depends on how the impedance is transformed by the MR-MN. The proposed design scheme appropriately transforms the impedance of a high power transistor to configure a low loss MR-MN. Numerical analyses show quantitative improvement in the loss using the proposed scheme. A 9-band 3-stage BS-MPA is newly designed following the proposed scheme and fabricated on a multi-layer low temperature co-fired ceramic substrate for compactness. The BS-MPA achieves a gain of over 30 dB, an output power of greater than 33 dBm and a power added efficiency of over 40% at the supply voltage of 4 V in each operating band.