Keyword Search Result

[Keyword] EV(2636hit)

161-180hit(2636hit)

  • Near Hue-Preserving Reversible Contrast and Saturation Enhancement Using Histogram Shifting

    Rio KUROKAWA  Kazuki YAMATO  Madoka HASEGAWA  

     
    PAPER

      Pubricized:
    2021/10/05
      Vol:
    E105-D No:1
      Page(s):
    54-64

    In recent years, several reversible contrast-enhancement methods for color images using digital watermarking have been proposed. These methods can restore an original image from a contrast-enhanced image, in which the information required to recover the original image is embedded with other payloads. In these methods, the hue component after enhancement is similar to that of the original image. However, the saturation of the image after enhancement is significantly lower than that of the original image, and the obtained image exhibits a pale color tone. Herein, we propose a method for enhancing the contrast and saturation of color images and nearly preserving the hue component in a reversible manner. Our method integrates red, green, and blue histograms and preserves the median value of the integrated components. Consequently, the contrast and saturation improved, whereas the subjective image quality improved. In addition, we confirmed that the hue component of the enhanced image is similar to that of the original image. We also confirmed that the original image was perfectly restored from the enhanced image. Our method can contribute to the field of digital photography as a legal evidence. The required storage space for color images and issues pertaining to evidence management can be reduced considering our method enables the creation of color images before and after the enhancement of one image.

  • Simulation-Based Understanding of “Charge-Sharing Phenomenon” Induced by Heavy-Ion Incident on a 65nm Bulk CMOS Memory Circuit

    Akifumi MARU  Akifumi MATSUDA  Satoshi KUBOYAMA  Mamoru YOSHIMOTO  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2021/08/05
      Vol:
    E105-C No:1
      Page(s):
    47-50

    In order to expect the single event occurrence on highly integrated CMOS memory circuit, quantitative evaluation of charge sharing between memory cells is needed. In this study, charge sharing area induced by heavy ion incident is quantitatively calculated by using device-simulation-based method. The validity of this method is experimentally confirmed using the charged heavy ion accelerator.

  • Balanced, Unbalances, and One-Sided Distributed Teams - An Empirical View on Global Software Engineering Education

    Daniel Moritz MARUTSCHKE  Victor V. KRYSSANOV  Patricia BROCKMANN  

     
    PAPER

      Pubricized:
    2021/09/30
      Vol:
    E105-D No:1
      Page(s):
    2-10

    Global software engineering education faces unique challenges to reflect as close as possible real-world distributed team development in various forms. The complex nature of planning, collaborating, and upholding partnerships present administrative difficulties on top of budgetary constrains. These lead to limited opportunities for students to gain international experiences and for researchers to propagate educational and practical insights. This paper presents an empirical view on three different course structures conducted by the same research and educational team over a four-year time span. The courses were managed in Japan and Germany, facing cultural challenges, time-zone differences, language barriers, heterogeneous and homogeneous team structures, amongst others. Three semesters were carried out before and one during the Covid-19 pandemic. Implications for a recent focus on online education for software engineering education and future directions are discussed. As administrational and institutional differences typically do not guarantee the same number of students on all sides, distributed teams can be 1. balanced, where the number of students on one side is less than double the other, 2. unbalanced, where the number of students on one side is significantly larger than double the other, or 3. one-sided, where one side lacks students altogether. An approach for each of these three course structures is presented and discussed. Empirical analyses and reoccurring patterns in global software engineering education are reported. In the most recent three global software engineering classes, students were surveyed at the beginning and the end of the semester. The questionnaires ask students to rank how impactful they perceive factors related to global software development such as cultural aspects, team structure, language, and interaction. Results of the shift in mean perception are compared and discussed for each of the three team structures.

  • Analyzing Web Search Strategy of Software Developers to Modify Source Codes

    Keitaro NAKASAI  Masateru TSUNODA  Kenichi MATSUMOTO  

     
    LETTER

      Pubricized:
    2021/10/29
      Vol:
    E105-D No:1
      Page(s):
    31-36

    Software developers often use a web search engine to improve work efficiency. However, web search strategies (e.g., frequently changing web search keywords) may be different for each developer. In this study, we attempted to define a better web search strategy. Although many previous studies analyzed web search behavior in programming, they did not provide guidelines for web search strategies. To suggest guidelines for web search strategies, we asked 10 subjects four questions about programming which they had to solve, and analyzed their behavior. In the analysis, we focused on the subjects' task time and the web search metrics defined by us. Based on our experiment, to enhance the effectiveness of the search, we suggest (1) that one should not go through the next search result pages, (2) the number of keywords in queries should be suppressed, and (3) previously used keywords must be avoided when creating a new query.

  • Device-Free Localization via Sparse Coding with a Generalized Thresholding Algorithm

    Qin CHENG  Linghua ZHANG  Bo XUE  Feng SHU  Yang YU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/08/05
      Vol:
    E105-B No:1
      Page(s):
    58-66

    As an emerging technology, device-free localization (DFL) using wireless sensor networks to detect targets not carrying any electronic devices, has spawned extensive applications, such as security safeguards and smart homes or hospitals. Previous studies formulate DFL as a classification problem, but there are still some challenges in terms of accuracy and robustness. In this paper, we exploit a generalized thresholding algorithm with parameter p as a penalty function to solve inverse problems with sparsity constraints for DFL. The function applies less bias to the large coefficients and penalizes small coefficients by reducing the value of p. By taking the distinctive capability of the p thresholding function to measure sparsity, the proposed approach can achieve accurate and robust localization performance in challenging environments. Extensive experiments show that the algorithm outperforms current alternatives.

  • Searching and Learning Discriminative Regions for Fine-Grained Image Retrieval and Classification

    Kangbo SUN  Jie ZHU  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/10/18
      Vol:
    E105-D No:1
      Page(s):
    141-149

    Local discriminative regions play important roles in fine-grained image analysis tasks. How to locate local discriminative regions with only category label and learn discriminative representation from these regions have been hot spots. In our work, we propose Searching Discriminative Regions (SDR) and Learning Discriminative Regions (LDR) method to search and learn local discriminative regions in images. The SDR method adopts attention mechanism to iteratively search for high-response regions in images, and uses this as a clue to locate local discriminative regions. Moreover, the LDR method is proposed to learn compact within category and sparse between categories representation from the raw image and local images. Experimental results show that our proposed approach achieves excellent performance in both fine-grained image retrieval and classification tasks, which demonstrates its effectiveness.

  • A Simple but Efficient Ranking-Based Differential Evolution

    Jiayi LI  Lin YANG  Junyan YI  Haichuan YANG  Yuki TODO  Shangce GAO  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2021/10/05
      Vol:
    E105-D No:1
      Page(s):
    189-192

    Differential Evolution (DE) algorithm is simple and effective. Since DE has been proposed, it has been widely used to solve various complex optimization problems. To further exploit the advantages of DE, we propose a new variant of DE, termed as ranking-based differential evolution (RDE), by performing ranking on the population. Progressively better individuals in the population are used for mutation operation, thus improving the algorithm's exploitation and exploration capability. Experimental results on a number of benchmark optimization functions show that RDE significantly outperforms the original DE and performs competitively in comparison with other two state-of-the-art DE variants.

  • Finite-Size Correction of Expectation-Propagation Detection Open Access

    Yuki OBA  Keigo TAKEUCHI  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/07/19
      Vol:
    E105-A No:1
      Page(s):
    77-81

    Expectation propagation (EP) is a powerful algorithm for signal recovery in compressed sensing. This letter proposes correction of a variance message before denoising to improve the performance of EP in the high signal-to-noise ratio (SNR) regime for finite-sized systems. The variance massage is replaced by an observation-dependent consistent estimator of the mean-square error in estimation before denoising. Massive multiple-input multiple-output (MIMO) is considered to verify the effectiveness of the proposed correction. Numerical simulations show that the proposed variance correction improves the high SNR performance of EP for massive MIMO with a few hundred transmit and receive antennas.

  • CLAHE Implementation and Evaluation on a Low-End FPGA Board by High-Level Synthesis

    Koki HONDA  Kaijie WEI  Masatoshi ARAI  Hideharu AMANO  

     
    PAPER

      Pubricized:
    2021/07/12
      Vol:
    E104-D No:12
      Page(s):
    2048-2056

    Automobile companies have been trying to replace side mirrors of cars with small cameras for reducing air resistance. It enables us to apply some image processing to improve the quality of the image. Contrast Limited Adaptive Histogram Equalization (CLAHE) is one of such techniques to improve the quality of the image for the side mirror camera, which requires a large computation performance. Here, an implementation method of CLAHE on a low-end FPGA board by high-level synthesis is proposed. CLAHE has two main processing parts: cumulative distribution function (CDF) generation, and bilinear interpolation. During the CDF generation, the effect of increasing loop initiation interval can be greatly reduced by placing multiple Processing Elements (PEs). and during the interpolation, latency and BRAM usage were reduced by revising how to hold CDF and calculation method. Finally, by connecting each module with streaming interfaces, using data flow pragmas, overlapping processing, and hiding data transfer, our HLS implementation achieved a comparable result to that of HDL. We parameterized the components of the algorithm so that the number of tiles and the size of the image can be easily changed. The source code for this research can be downloaded from https://github.com/kokihonda/fpga_clahe.

  • A Hybrid Retinex-Based Algorithm for UAV-Taken Image Enhancement

    Xinran LIU  Zhongju WANG  Long WANG  Chao HUANG  Xiong LUO  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2021/08/05
      Vol:
    E104-D No:11
      Page(s):
    2024-2027

    A hybrid Retinex-based image enhancement algorithm is proposed to improve the quality of images captured by unmanned aerial vehicles (UAVs) in this paper. Hyperparameters of the employed multi-scale Retinex with chromaticity preservation (MSRCP) model are automatically tuned via a two-phase evolutionary computing algorithm. In the two-phase optimization algorithm, the Rao-2 algorithm is applied to performing the global search and a solution is obtained by maximizing the objective function. Next, the Nelder-Mead simplex method is used to improve the solution via local search. Real UAV-taken images of bad quality are collected to verify the performance of the proposed algorithm. Meanwhile, four famous image enhancement algorithms, Multi-Scale Retinex, Multi-Scale Retinex with Color Restoration, Automated Multi-Scale Retinex, and MSRCP are utilized as benchmarking methods. Meanwhile, two commonly used evolutionary computing algorithms, particle swarm optimization and flower pollination algorithm, are considered to verify the efficiency of the proposed method in tuning parameters of the MSRCP model. Experimental results demonstrate that the proposed method achieves the best performance compared with benchmarks and thus the proposed method is applicable for real UAV-based applications.

  • A Two-Stage Hardware Trojan Detection Method Considering the Trojan Probability of Neighbor Nets

    Kento HASEGAWA  Tomotaka INOUE  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2021/05/12
      Vol:
    E104-A No:11
      Page(s):
    1516-1525

    Due to the rapid growth of the information industry, various Internet of Things (IoT) devices have been widely used in our daily lives. Since the demand for low-cost and high-performance hardware devices has increased, malicious third-party vendors may insert malicious circuits into the products to degrade their performance or to leak secret information stored at the devices. The malicious circuit surreptitiously inserted into the hardware products is known as a ‘hardware Trojan.’ How to detect hardware Trojans becomes a significant concern in recent hardware production. In this paper, we propose a hardware Trojan detection method that employs two-stage neural networks and effectively utilizes the Trojan probability of neighbor nets. At the first stage, the 11 Trojan features are extracted from the nets in a given netlist, and then we estimate the Trojan probability that shows the probability of the Trojan nets. At the second stage, we learn the Trojan probability of the neighbor nets for each net in the netlist and classify the nets into a set of normal nets and Trojan ones. The experimental results demonstrate that the average true positive rate becomes 83.6%, and the average true negative rate becomes 96.5%, which is sufficiently high compared to the existing methods.

  • An Anomalous Behavior Detection Method Utilizing Extracted Application-Specific Power Behaviors

    Kazunari TAKASAKI  Ryoichi KIDA  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2021/07/08
      Vol:
    E104-A No:11
      Page(s):
    1555-1565

    With the widespread use of Internet of Things (IoT) devices in recent years, we utilize a variety of hardware devices in our daily life. On the other hand, hardware security issues are emerging. Power analysis is one of the methods to detect anomalous behaviors, but it is hard to apply it to IoT devices where an operating system and various software programs are running. In this paper, we propose an anomalous behavior detection method for an IoT device by extracting application-specific power behaviors. First, we measure power consumption of an IoT device, and obtain the power waveform. Next, we extract an application-specific power waveform by eliminating a steady factor from the obtained power waveform. Finally, we extract feature values from the application-specific power waveform and detect an anomalous behavior by utilizing the local outlier factor (LOF) method. We conduct two experiments to show how our proposed method works: one runs three application programs and an anomalous application program randomly and the other runs three application programs in series and an anomalous application program very rarely. Application programs on both experiments are implemented on a single board computer. The experimental results demonstrate that the proposed method successfully detects anomalous behaviors by extracting application-specific power behaviors, while the existing approaches cannot.

  • A Multi-Task Scheme for Supervised DNN-Based Single-Channel Speech Enhancement by Using Speech Presence Probability as the Secondary Training Target

    Lei WANG  Jie ZHU  Kangbo SUN  

    This paper has been cancelled due to violation of duplicate submission policy on IEICE Transactions on Information and Systems.
     
    PAPER-Speech and Hearing

      Pubricized:
    2021/08/05
      Vol:
    E104-D No:11
      Page(s):
    1963-1970

    To cope with complicated interference scenarios in realistic acoustic environment, supervised deep neural networks (DNNs) are investigated to estimate different user-defined targets. Such techniques can be broadly categorized into magnitude estimation and time-frequency mask estimation techniques. Further, the mask such as the Wiener gain can be estimated directly or derived by the estimated interference power spectral density (PSD) or the estimated signal-to-interference ratio (SIR). In this paper, we propose to incorporate the multi-task learning in DNN-based single-channel speech enhancement by using the speech presence probability (SPP) as a secondary target to assist the target estimation in the main task. The domain-specific information is shared between two tasks to learn a more generalizable representation. Since the performance of multi-task network is sensitive to the weight parameters of loss function, the homoscedastic uncertainty is introduced to adaptively learn the weights, which is proven to outperform the fixed weighting method. Simulation results show the proposed multi-task scheme improves the speech enhancement performance overall compared to the conventional single-task methods. And the joint direct mask and SPP estimation yields the best performance among all the considered techniques.

  • A CNN-Based Optimal CTU λ Decision for HEVC Intra Rate Control

    Lili WEI  Zhenglong YANG  Zhenming WANG  Guozhong WANG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2021/07/19
      Vol:
    E104-D No:10
      Page(s):
    1766-1769

    Since HEVC intra rate control has no prior information to rely on for coding, it is a difficult work to obtain the optimal λ for every coding tree unit (CTU). In this paper, a convolutional neural network (CNN) based intra rate control is proposed. Firstly, a CNN with two last output channels is used to predict the key parameters of the CTU R-λ curve. For well training the CNN, a combining loss function is built and the balance factor γ is explored to achieve the minimum loss result. Secondly, the initial CTU λ can be calculated by the predicted results of the CNN and the allocated bit per pixel (bpp). According to the rate distortion optimization (RDO) of a frame, a spatial equation is derived between the CTU λ and the frame λ. Lastly, The CTU clipping function is used to obtain the optimal CTU λ for the intra rate control. The experimental results show that the proposed algorithm improves the intra rate control performance significantly with a good rate control accuracy.

  • Fitness-Distance Balance with Functional Weights: A New Selection Method for Evolutionary Algorithms

    Kaiyu WANG  Sichen TAO  Rong-Long WANG  Yuki TODO  Shangce GAO  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2021/07/21
      Vol:
    E104-D No:10
      Page(s):
    1789-1792

    In 2019, a new selection method, named fitness-distance balance (FDB), was proposed. FDB has been proved to have a significant effect on improving the search capability for evolutionary algorithms. But it still suffers from poor flexibility when encountering various optimization problems. To address this issue, we propose a functional weights-enhanced FDB (FW). These functional weights change the original weights in FDB from fixed values to randomly generated ones by a distribution function, thereby enabling the algorithm to select more suitable individuals during the search. As a case study, FW is incorporated into the spherical search algorithm. Experimental results based on various IEEE CEC2017 benchmark functions demonstrate the effectiveness of FW.

  • Diversity-Robust Acoustic Feature Signatures Based on Multiscale Fractal Dimension for Similarity Search of Environmental Sounds

    Motohiro SUNOUCHI  Masaharu YOSHIOKA  

     
    PAPER-Music Information Processing

      Pubricized:
    2021/07/02
      Vol:
    E104-D No:10
      Page(s):
    1734-1748

    This paper proposes new acoustic feature signatures based on the multiscale fractal dimension (MFD), which are robust against the diversity of environmental sounds, for the content-based similarity search. The diversity of sound sources and acoustic compositions is a typical feature of environmental sounds. Several acoustic features have been proposed for environmental sounds. Among them is the widely-used Mel-Frequency Cepstral Coefficients (MFCCs), which describes frequency-domain features. However, in addition to these features in the frequency domain, environmental sounds have other important features in the time domain with various time scales. In our previous paper, we proposed enhanced multiscale fractal dimension signature (EMFD) for environmental sounds. This paper extends EMFD by using the kernel density estimation method, which results in better performance of the similarity search tasks. Furthermore, it newly proposes another acoustic feature signature based on MFD, namely very-long-range multiscale fractal dimension signature (MFD-VL). The MFD-VL signature describes several features of the time-varying envelope for long periods of time. The MFD-VL signature has stability and robustness against background noise and small fluctuations in the parameters of sound sources, which are produced in field recordings. We discuss the effectiveness of these signatures in the similarity sound search by comparing with acoustic features proposed in the DCASE 2018 challenges. Due to the unique descriptiveness of our proposed signatures, we confirmed the signatures are effective when they are used with other acoustic features.

  • An Enhanced HDPC-EVA Decoder Based on ADMM

    Yujin ZHENG  Yan LIN  Zhuo ZHANG  Qinglin ZHANG  Qiaoqiao XIA  

     
    LETTER-Coding Theory

      Pubricized:
    2021/04/02
      Vol:
    E104-A No:10
      Page(s):
    1425-1429

    Linear programming (LP) decoding based on the alternating direction method of multipliers (ADMM) has proved to be effective for low-density parity-check (LDPC) codes. However, for high-density parity-check (HDPC) codes, the ADMM-LP decoder encounters two problems, namely a high-density check matrix in HDPC codes and a great number of pseudocodewords in HDPC codes' fundamental polytope. The former problem makes the check polytope projection extremely complex, and the latter one leads to poor frame error rates (FER) performance. To address these issues, we introduce the even vertex algorithm (EVA) into the ADMM-LP decoding algorithm for HDPC codes, named as HDPC-EVA. HDPC-EVA can reduce the complexity of the projection process and improve the FER performance. We further enhance the proposed decoder by the automorphism groups of codes, creating diversity in the parity-check matrix. The simulation results show that the proposed decoder is capable of cutting down the average decoding time for each iteration by 30%-60%, as well as achieving near maximum likelihood (ML) performance on some BCH codes.

  • Mining Emergency Event Logs to Support Resource Allocation

    Huiling LI  Cong LIU  Qingtian ZENG  Hua HE  Chongguang REN  Lei WANG  Feng CHENG  

     
    PAPER-Office Information Systems, e-Business Modeling

      Pubricized:
    2021/06/28
      Vol:
    E104-D No:10
      Page(s):
    1651-1660

    Effective emergency resource allocation is essential to guarantee a successful emergency disposal, and it has become a research focus in the area of emergency management. Emergency event logs are accumulated in modern emergency management systems and can be analyzed to support effective resource allocation. This paper proposes a novel approach for efficient emergency resource allocation by mining emergency event logs. More specifically, an emergency event log with various attributes, e.g., emergency task name, emergency resource type (reusable and consumable ones), required resource amount, and timestamps, is first formalized. Then, a novel algorithm is presented to discover emergency response process models, represented as an extension of Petri net with resource and time elements, from emergency event logs. Next, based on the discovered emergency response process models, the minimum resource requirements for both reusable and consumable resources are obtained, and two resource allocation strategies, i.e., the Shortest Execution Time (SET) strategy and the Least Resource Consumption (LRC) strategy, are proposed to support efficient emergency resource allocation decision-making. Finally, a chlorine tank explosion emergency case study is used to demonstrate the applicability and effectiveness of the proposed resource allocation approach.

  • Document-Level Neural Machine Translation with Associated Memory Network

    Shu JIANG  Rui WANG  Zuchao LI  Masao UTIYAMA  Kehai CHEN  Eiichiro SUMITA  Hai ZHAO  Bao-liang LU  

     
    PAPER-Natural Language Processing

      Pubricized:
    2021/06/24
      Vol:
    E104-D No:10
      Page(s):
    1712-1723

    Standard neural machine translation (NMT) is on the assumption that the document-level context is independent. Most existing document-level NMT approaches are satisfied with a smattering sense of global document-level information, while this work focuses on exploiting detailed document-level context in terms of a memory network. The capacity of the memory network that detecting the most relevant part of the current sentence from memory renders a natural solution to model the rich document-level context. In this work, the proposed document-aware memory network is implemented to enhance the Transformer NMT baseline. Experiments on several tasks show that the proposed method significantly improves the NMT performance over strong Transformer baselines and other related studies.

  • Asymptotic Stabilization of a Chain of Integrators by an Event-Triggered Gain-Scaling Controller

    Sang-Young OH  Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Pubricized:
    2021/04/14
      Vol:
    E104-A No:10
      Page(s):
    1421-1424

    We consider an asymptotic stabilization problem for a chain of integrators by using an event-triggered controller. The times required between event-triggered executions and controller updates are uncertain, time-varying, and not necessarily small. We show that the considered system can be asymptotically stabilized by an event-triggered gain-scaling controller. Also, we show that the interexecution times are lower bounded and their lower bounds can be manipulated by a gain-scaling factor. Some future extensions are also discussed. An example is given for illustration.

161-180hit(2636hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.