Yuki IMAMURA Daiki FUJII Yuki ENOMOTO Yuichi UENO Yosei SHIBATA Munehiro KIMURA
The slit coater method is an excellent liquid crystal (LC) alignment control technique that can order the LC alignment even on plastic substrates without pre-forming optional LC alignment films. However, controlling an arbitrary pretilt angle is still one of the issues. To elucidate the essence of the mechanism of the alignment transition from the planer to vertical alignment by UV polymerization, an in-liquid atomic force microscope was introduced. As a result, it was deduced that the LC alignment transition is induced by the realignment of mesogenic groups rather than surface topological change.
Kenji UEHARA Kunihiko HIRAISHI
In this paper, we present a framework for composing discrete-event simulation models from a large amount of airspace traffic data without using any specific waypoints. The framework consists of two parts. In the first part, abstracted route graphs that indicate representative routes in the airspace are composed. We propose two methods for extracting important routes in the form of graphs based on combination of various technologies such as space partition, trajectory clustering, and skeleton extraction. In the second part, discrete-event simulation models are composed based on statistical information on flight time along each edge of the abstracted route graph. The composed simulation models have intermediate granularity between micro models, such as multi-agent simulation, and macro models, such as queuing models, and therefore they should be classified as mesoscopic models. Finally, we show numerical results to evaluate the accuracy of the simulation model.
Recent years have seen a general resurgence of interest in analog signal processing and computing architectures. In addition, extensive theoretical and experimental literature on chaos and analog chaotic oscillators exists. One peculiarity of these circuits is the ability to generate, despite their structural simplicity, complex spatiotemporal patterns when several of them are brought towards synchronization via coupling mechanisms. While by no means a systematic survey, this paper provides a personal perspective on this area. After briefly covering design aspects and the synchronization phenomena that can arise, a selection of results exemplifying potential applications is presented, including in robot control, distributed sensing, reservoir computing, and data augmentation. Despite their interesting properties, the industrial applications of these circuits remain largely to be realized, seemingly due to a variety of technical and organizational factors including a paucity of design and optimization techniques. Some reflections are given regarding this situation, the potential relevance to discontinuous innovation in analog circuit design of chaotic oscillators taken both individually and as synchronized networks, and the factors holding back the transition to higher levels of technology readiness.
Kundan Lal DAS Munehisa SEKIKAWA Tadashi TSUBONE Naohiko INABA Hideaki OKAZAKI
This paper discusses the synchronization of two identical canard-generating oscillators. First, we investigate a canard explosion generated in a system containing a Bonhoeffer-van der Pol (BVP) oscillator using the actual parameter values obtained experimentally. We find that it is possible to numerically observe a canard explosion using this dynamic oscillator. Second, we analyze the complete and in-phase synchronizations of identical canard-generating coupled oscillators via experimental and numerical methods. However, we experimentally determine that a small decrease in the coupling strength of the system induces the collapse of the complete synchronization and the occurrence of a complex synchronization; this finding could not be explained considering four-dimensional autonomous coupled BVP oscillators in our numerical work. To numerically investigate the experimental results, we construct a model containing coupled BVP oscillators that are subjected to two weak periodic perturbations having the same frequency. Further, we find that this model can efficiently numerically reproduce experimentally observed synchronization.
Zixuan LI Sangyeop LEE Noboru ISHIHARA Hiroyuki ITO
A wireless sensor terminal module of 5cc size (2.5 cm × 2.5 cm × 0.8 cm) that does not require a battery is proposed by integrating three kinds of circuit technologies. (i) a low-power sensor interface: an FM modulation type CMOS sensor interface circuit that can operate with a typical power consumption of 24.5 μW was fabricated by the 0.7-μm CMOS process technology. (ii) power supply to the sensor interface circuit: a wireless power transmission characteristic to a small-sized PCB spiral coil antenna was clarified and applied to the module. (iii) wireless sensing from the module: backscatter communication technology that modulates the signal from the base terminal equipment with sensor information and reflects it, which is used for the low-power sensing operation. The module fabricated includes a rectifier circuit with the PCB spiral coil antenna that receives wireless power transmitted from base terminal equipment by electromagnetic resonance coupling and converts it into DC power and a sensor interface circuit that operates using the power. The interface circuit modulates the received signal with the sensor information and reflects it back to the base terminal. The module could achieve 100 mm communication distance when 0.4 mW power is feeding to the sensor terminal.
A 150 GHz fundamental oscillator employing an inter-stage matching network based on a transmission line is presented in this letter. The proposed oscillator consists of a two-stage common-emitter amplifier loop, whose inter-stage connections are optimized to meet the oscillation condition. The oscillator is designed in a 130-nm SiGe BiCMOS process that offers fT and fMAX of 350 GHz and 450 GHz. According to simulation results, an output power of 3.17 dBm is achieved at 147.6 GHz with phase noise of -115 dBc/Hz at 10 MHz offset and figure-of-merit (FoM) of -180 dBc/Hz.
Previously a method was reported to determine the mathematical representation of the microwave oscillator admittance by using numerical calculation. When analyzing the load characteristics and synchronization phenomena by using this formula, the analysis results meet with the experimental results. This paper describes a method to determine the mathematical representation manually.
Yiping TANG Kohei HATANO Eiji TAKIMOTO
We introduce the Hexagonal Convolutional Neural Network (HCNN), a modified version of CNN that is robust against rotation. HCNN utilizes a hexagonal kernel and a multi-block structure that enjoys more degrees of rotation information sharing than standard convolution layers. Our structure is easy to use and does not affect the original tissue structure of the network. We achieve the complete rotational invariance on the recognition task of simple pattern images and demonstrate better performance on the recognition task of the rotated MNIST images, synthetic biomarker images and microscopic cell images than past methods, where the robustness to rotation matters.
In this paper, a circuit based on a field programmable analog array (FPAA) is proposed for three types of chaotic spiking oscillator (CSO). The input/output conversion characteristics of a specific element in the FPAA can be defined by the user. By selecting the proper characteristics, three types of CSO are realized without changing the structure of the circuit itself. Chaotic attractors are observed in a hardware experiment. It is confirmed that the dynamics of the CSOs are consistent with numerical simulations.
Robin KAESBACH Marcel VAN DELDEN Thomas MUSCH
Precision microwave measurement systems require highly stable oscillators with both excellent long-term and short-term stability. Compared to components used in laboratory instruments, dielectric resonator oscillators (DRO) offer low phase noise with greatly reduced mechanical complexity. To further enhance performance, phase-locked loop (PLL) stabilization can be used to eliminate drift and provide precise frequency control. In this work, the design of a low-cost DRO concept is presented and its performance is evaluated through simulations and measurements. An open-loop phase noise of -107.2 dBc/Hz at 10 kHz offset frequency and 12.8 GHz output frequency is demonstrated. Drift and phase noise are reduced by a PLL, so that a very low jitter of under 29.6 fs is achieved over the entire operating bandwidth.
Fengchuan XU Qiaoyue LI Guilu ZHANG Yasheng CHANG Zixuan ZHENG
This letter presents a global feature-based method for evaluating the no reference quality of scanning electron microscopy (SEM) contrast-distorted images. Based on the characteristics of SEM images and the human visual system, the global features of SEM images are extracted as the score for evaluating image quality. In this letter, the texture information of SEM images is first extracted using a low-pass filter with orientation, and the amount of information in the texture part is calculated based on the entropy reflecting the complexity of the texture. The singular values with four scales of the original image are then calculated, and the amount of structural change between different scales is calculated and averaged. Finally, the amounts of texture information and structural change are pooled to generate the final quality score of the SEM image. Experimental results show that the method can effectively evaluate the quality of SEM contrast-distorted images.
Masaya MIYAHARA Zule XU Takehito ISHII Noritoshi KIMURA
In this paper, we propose a hybrid crystal oscillator which achieves both quick startup and low steady-state power consumption. At startup, a large negative resistance is realized by configuring a Pierce oscillating circuit with a multi-stage inverter amplifier, resulting in high-speed startup. During steady-state oscillation, the oscillator is reconfigured as a class-C complementary Colpitts circuit for low power consumption and low phase noise. Prototype chips were fabricated in 65nm CMOS process technology. With Pierce-type configuration, the measured startup time and startup energy of the oscillator are reduced to 1/11 and 1/5, respectively, compared with the one without Pierce-type configuration. The power consumption during steady oscillation is 30 µW.
Sangyeop LEE Shuhei AMAKAWA Takeshi YOSHIDA Minoru FUJISHIMA
This paper presents a divide-by-9 injection-locked frequency divider (ILFD). It can lock onto about 6-GHz input with a locking range of 3.23GHz (58%). The basic concept of the ILFD is based on employing self-gated multiple inputs into the multiple-stage ring oscillator. A wide lock range is also realized by adapting harmonic-control circuits, which can boost specific harmonics generated by mixing. The ILFD was fabricated using a 55-nm deeply depleted channel (DDC) CMOS process. It occupies an area of 0.0210mm2, and consumes a power of 14.4mW.
This paper develops a design method and theoretical analysis for piecewise nonlinear oscillators that have desired circular limit cycles. Especially, the mathematical proof on existence, uniqueness, and stability of the limit cycle is shown for the piecewise nonlinear oscillator. In addition, the relationship between parameters in the oscillator and rotational directions and periods of the limit cycle trajectories is investigated. Then, some numerical simulations show that the piecewise nonlinear oscillator has a unique and stable limit cycle and the properties on rotational directions and periods hold.
Koichi MAEZAWA Umer FAROOQ Masayuki MORI
A novel displacement sensor was proposed based on a frequency delta-sigma modulator (FDSM) employing a microwave oscillator. To demonstrate basic operation, we fabricated a stylus surface profiler using a cylindrical cavity resonator, where one end of the cavity is replaced by a thin metal diaphragm with a stylus probe tip. Good surface profile was successfully obtained with this device. A 10 nm depth trench was clearly observed together with a 10 µm trench in a single scan without gain control. This result clearly demonstrates an extremely wide dynamic range of the FDSM displacement sensors.
Xinqun LIU Tao LI Yingxiao ZHAO Jinlin PENG
Conventional Nyquist folding receiver (NYFR) uses zero crossing rising (ZCR) voltage times to control the RF sample clock, which is easily affected by noise. Moreover, the analog and digital parts are not synchronized so that the initial phase of the input signal is lost. Furthermore, it is assumed in most literature that the input signal is in a single Nyquist zone (NZ), which is inconsistent with the actual situation. In this paper, we propose an improved architecture denominated as a dual-channel NYFR with adjustable local oscillator (LOS) and an information recovery algorithm. The simulation results demonstrate the validity and viability of the proposed architecture and the corresponding algorithm.
Koichi NARAHARA Koichi MAEZAWA
Series-connection of resonant-tunneling diodes (RTDs) has been considered to be efficient in upgrading the output power when it is introduced to oscillator architecture. This work is for clarifying the same architecture also contributes to increasing oscillation frequency because the device parasitic capacitance is reduced M times for M series-connected RTD oscillator. Although this mechanism is expected to be universal, we restrict the discussion to the recently proposed multiphase oscillator utilizing an RTD oscillator lattice loop. After explaining the operation principle, we evaluate how the oscillation frequency depends on the number of series-connected RTDs through full-wave calculations. In addition, the essential dynamics were validated experimentally in breadboarded multiphase oscillators using Esaki diodes in place of RTDs.
Studies on intrinsic Josephson junctions (IJJs) of cuprate superconductors are reviewed. A system consisting of a few IJJs provides phenomena to test the Josephson phase dynamics and its interaction between adjacent IJJs within a nanometer scale, which is unique to cuprate superconductors. Quasiparticle density of states, which provides direct information on the Cooper-pair formation, is also revealed in the system. In contrast, Josephson plasma emission, which is an electromagnetic wave radiation in the sub-terahertz frequency range from an IJJ stack, arises from the synchronous phase dynamics of hundreds of IJJs coupled globally. This review summarizes a wide range of physical phenomena in IJJ systems having capacitive and inductive couplings with different nanometer and micrometer length scales, respectively.
Mamoru UGAJIN Yuya KAKEI Nobuyuki ITOH
Quadrature voltage-controlled oscillators (VCOs) with current-weight-average and voltage-weight-average phase-adjusting architectures are studied. The phase adjusting equalizes the oscillation frequency to the LC-resonant frequency. The merits of the equalization are explained by using Leeson's phase noise equation and the impulse sensitivity function (ISF). Quadrature VCOs with the phase-adjusting architectures are fabricated using 180-nm TSMC CMOS and show low-phase-noise performances compared to a conventional differential VCO. The ISF analysis and small-signal analysis also show that the drawbacks of the current-weight-average phase-adjusting and voltage-weight-average phase-adjusting architectures are current-source noise effect and large additional capacitance, respectively. A voltage-average-adjusting circuit with a source follower at its input alleviates the capacitance increase.
Hiroshi SUZUKI Tsuyoshi FUNAKI
SiC-MOSFETs are being increasingly implemented in power electronics systems as low-loss, fast switching devices. Despite the advantages of an SiC-MOSFET, its large dv/dt or di/dt has fear of electromagnetic interference (EMI) noise. This paper proposes and demonstrates a simple and robust gate driver that can suppress ringing oscillation and surge voltage induced by the turn-off of the SiC-MOSFET body diode. The proposed gate driver utilizes the channel leakage current methodology (CLC) to enhance the damping effect by elevating the gate-source voltage (VGS) and inducing the channel leakage current in the device. The gate driver can self-adjust the timing of initiating CLC operation, which avoids an increase in switching loss. Additionally, the output voltage of the VGS elevation circuit does not need to be actively controlled in accordance with the operating conditions. Thus, the circuit topology is simple, and ringing oscillation can be easily attenuated with fixed circuit parameters regardless of operating conditions, minimizing the increase in switching loss. The effectiveness and versatility of proposed gate driver were experimentally validated for a wide range of operating conditions by double and single pulse switching tests.