Takeshi FUKUDA Tomokazu KURABAYASHI Hikari UDAKA Nayuta FUNAKI Miho SUZUKI Donghyun YOON Asahi NAKAHARA Tetsushi SEKIGUCHI Shuichi SHOJI
We report a real time method to monitor the chemical reaction in microdroplets, which contain an organic dye, 5(6)-carboxynaphthofluorescein and a CdSe/ZnS quantum dot using fluorescence spectra. Especially, the relationship between the droplet size and the reaction rate of the two reagents was investigated by changing an injection speed.
Wen-Kai LIN Shui-Hsiang SU Cheng-Lin HUANG Meiso YOKOYAMA
In this study, flexible organic solar cells (OSCs) employing a solution-processed hole-transporting layer (HTL) and low temperature annealing active layer have been fabricated. Vanadium oxide (V$_{2}$O$_{5})$, poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), V$_{2}$O$_{5}$/PEDOT:PSS or PEDOT:PSS/V$_{2}$O$_{5}$ is used as the HTL. Poly(3-hexythiophene) (P3HT):[6,6]-phenyl C61-butyric acid methyl ester (PCBM) is used as the active layer. HTL and active layer are all formed by a spin coating method on polyethylene terephthalate (PET) substrates. The OSC configuration has been optimized in the study to be PET/ITO/V$_{2}$O$_{5}$/PEDOT:PSS/P3HT:PCBM/LiF/Al. Based on a low annealing temperature of 90$^{circ}$C for P3HT:PCBM and parameters optimization of solution-processed V$_{2}$O$_{5}$/PEDOT:PSS, the OSC demonstrates a current density (JSC) and power conversion efficiency (PCE) of 6.08, mA/cm$^{2}$ and 1.57%, while an OSC without the HTL has PCE around 0.06%. The V$_{2}$O$_{5}$/PEDOT:PSS stacked HTL provides not only a stepwise hole-transporting energy diagram configuration but a smooth film surface for coating P3HT:PCBM active layer, which subsequently increases charge carrier transporting capability and extracts holes from the active layer to the anode.
Keisuke SUZUKI Tadashi TSUBONE
In this paper, we consider synchronization phenomena in coupled systems of piecewise constant oscillators. Both in-phase and anti-phase synchronization phenomena are observed in the oscillators, which are coupled by a voltage controlled current source (VCCS) with Signum-like characteristic. On the other hand, their co-existence is observed in the oscillators coupled by a VCCS with hysteresis characteristic. We analyze the stability of the synchronization phenomena in the coupled systems by using a fast calculation algorithm for the rigorous solutions. And we clarify the parameter regions of in-phase and anti-phase synchronization by deriving correlation coefficients. We suggest that the synchronization phenomena of the proposed systems qualitatively correspond to one of van der Pol oscillators coupled by passive elements. Some theoretical results are verified in the experimental circuits.
Takehiko AMAKI Masanori HASHIMOTO Takao ONOYE
This paper presents an oscillator-based true random number generator (TRNG) that dynamically unbiases 0/1 probability. The proposed TRNG automatically adjusts the duty cycle of a fast oscillator to 50%, and generates unbiased random numbers tolerating process variation and dynamic temperature fluctuation. A prototype chip of the proposed TRNG was fabricated with a 65nm CMOS process. Measurement results show that the developed duty cycle monitor obtained the probability of ‘1’ 4,100 times faster than the conventional output bit observation, or estimated the probability with 70 times higher accuracy. The proposed TRNG adjusted the probability of ‘1’ to within 50±0.07% in five chips in the temperature range of 0°C to 75°C. Consequently, the proposed TRNG passed the NIST and DIEHARD tests at 7.5Mbps with 6,670µm2 area.
Jun TAYA Kazuki KOJIMA Tomonori MUKUDA Akihiro NAKASHIMA Yuki SAGAWA Tokiyoshi MATSUDA Mutsumi KIMURA
We propose a temperature sensor employing a ring oscillator composed of poly-Si thin-film transistors (TFTs). Particularly in this research, we compare temperature sensors using TFTs with lightly-doped drain structure (LDD TFTs) and TFTs with offset drain structure (offset TFTs). First, temperature dependences of transistor characteristics are compared between the LDD and offset TFTs. It is confirmed that the offset TFTs have larger temperature dependence of the on current. Next, temperature dependences of oscillation frequencies are compared between ring oscillators using the LDD and offset TFTs. It is clarified that the ring oscillator using the offset TFTs is suitable to detect the temperature. We think that this kind of temperature sensor is available as a digital device.
Sayuri KOHMURA Arata KAWAMURA Youji IIGUNI
This paper proposes a noise reduction method for impact noise with damped oscillation caused by clinking a glass, hitting a bottle, and so on. The proposed method is based on the zero phase (ZP) signal defined as the IDFT of the spectral amplitude. When the target noise can be modeled as the sum of the impact part and the damped oscillation part, the proposed method can reduce them individually. First, the proposed method estimates the damped oscillation spectra and subtracts them from the observed spectra. Then, the impact part is reduced by replacing several samples of the ZP observed signal. Simulation results show that the proposed method improved 10dB of SNR of real impact noise.
Keishi TSUBAKI Tetsuya HIROSE Yuji OSAKI Seiichiro SHIGA Nobutaka KUROKI Masahiro NUMA
A fully on-chip CMOS relaxation oscillator (ROSC) with a PVT variation compensation circuit is proposed in this paper. The circuit is based on a conventional ROSC and has a distinctive feature in the compensation circuit that compensates for comparator's non-idealities caused by not only offset voltage, but also delay time. Measurement results demonstrated that the circuit can generate a stable clock frequency of 6.66kHz. The current dissipation was 320nA at 1.0-V power supply. The measured line regulation and temperature coefficient were 0.98%/V and 56ppm/°C, respectively.
Jeonghoon HAN Masaya MIYAHARA Akira MATSUZAWA
This paper derives a maximum lock range of an injection locked ring oscillator in a direct injection method and presents an injection locked charge-pump phase-locked loop (CPPLL) with a replica of a ring oscillator. The proposed injection-locked PLL separates the injection-locked VCO from the continuous phase-tracking loop of the PLL such that can provide stable lock-state maintenance and tolerance to temperature and supply voltage variation. The measurement results show that the proposed injection-locked PLL can be tolerable to voltage variation of 11.2% in supply voltage of 1.2V. In-band noises of the injection-locked oscillator at offset frequencies of 10kHz and 100kHz are -108.2dBc/Hz and -114.6dBc/Hz, respectively.
Hiroyuki YASUDA Mikio HASEGAWA
We propose a natural synchronization scheme for wireless uncoupled devices, without any signal exchange among them. Our proposed scheme only uses natural environmental fluctuations, such as the temperature or humidity of the air, the environmental sounds, and so on, for the synchronization of the uncoupled devices. This proposed synchronization is realized based on the noise-induced synchronization phenomenon, uncoupled nonlinear oscillators synchronize with each other only by adding identical common noises to each of them. Based on the theory of this phenomenon, the oscillators can also be synchronized by noise sequences, which are not perfectly identical signals. Since the environmental natural fluctuations collected at neighboring locations are similar to each other and cross-correlation becomes high, our proposed scheme enabling synchronization only by natural environmental fluctuations can be realized. As an application of this proposed synchronization, we introduce wireless sensor networks, for which synchronization is important for reducing power consumption by intermittent data transmission. We collect environmental fluctuations using the wireless sensor network devices. Our results show that the wireless sensor network devices can be synchronized only by the independently collected natural signals, such as temperature and humidity, at each wireless sensor device.
Deshan CHEN Atsushi MIYAMOTO Shun'ichi KANEKO
This paper describes a robust three-dimensional (3D) surface reconstruction method that can automatically eliminate shadowing errors. For modeling shadowing effect, a new shadowing compensation model based on the angle distribution of backscattered electrons is introduced. Further, it is modified with respect to some practical factors. Moreover, the proposed iterative shadowing compensation method, which performs commutatively between the compensation of image intensities and the modification of the corresponding 3D surface, can effectively provide both an accurate 3D surface and compensated shadowless images after convergence.
This paper reviews two simple numerical algorithms particularly useful in Computational ElectroMagnetics (CEM): the Weighted Averages (WA) algorithm and the Double Exponential (DE) quadrature. After a short historical introduction and an elementary description of the mathematical procedures underlying both techniques, they are applied to the evaluation of Sommerfeld integrals, where WA and DE combine together to provide a numerical tool of unprecedented quality. It is also shown that both algorithms have a much wider range of applications. A generalization of the WA algorithm, able to cope with integrands including products of Bessel and similar oscillatory functions, is described. Similarly, the original DE algorithm is adapted with exceptional results to the evaluation of the multidimensional singular integrals arising in the discretization of Integral-Equation based CEM formulations. The new possibilities of WA and DE algorithms are demonstrated through several practical numerical examples.
Jae-Hoon SONG Byung-Sung KIM Sangwook NAM
In this paper, a 24GHz transformer-coupled VCO is presented for a wide linear tuning range in the 0.13-µm CMOS process. The measured results of the proposed VCO show that the center frequency is 23.5GHz with 7.4% frequency tuning range. The output frequency curve has wide linear tuning region (5.5%) at the middle of the curve. Also, the VCO exhibits good phase noise of -110.23dBc/Hz at an offset frequency of 1 MHz. It has a compact chip size of 430 × 500µm2. The VCO core DC power consumption is 5.4mW at 1.35V VDD.
Masahiro KINUGAWA Yu-ichi HAYASHI Takaaki MIZUKI Hideaki SONE
Recently, it has been shown that electromagnetic radiation from electrical devices leaks internal information. Some investigations have shown that information leaks through the clock frequency and higher harmonic waves. Thus, previous studies have focused on the information leakage from information processing circuits. However, there has been little discussion about information leaks from peripheral circuits. In this paper, we focus on the oscillation frequency of the integrated RC oscillators. In this paper, we use a keyboard as a device that includes a RC oscillator. Then experiments observed information leaks caused by key inputs. Our experiments show that frequency fluctuations cause information leakages and clarify what information can be acquired from the fluctuation. Then, we investigate the possibility of information leaking from peripheral circuits through modulated signals which are radiated by the peripheral circuits.
The authors have developed a mechanism that applies real vibration to electrical contacts by hammering oscillation in the vertical direction similar to that in real cases, and they have studied the effects of micro-oscillation on the contacts using the mechanism. It is shown that the performance of the hammering oscillation mechanism (HOM) for measuring acceleration and force is superior to that of other methods in terms of the stability of data. Using the mechanism, much simpler and more practical protocols are proposed for evaluating acceleration, force, and mass using only the measured acceleration. It is also indicated that the relationship between the inertial force generated by the hammering oscillation mechanism and the frictional force in electrical devices attached on a board is related to one of the causes of the degradation of electrical contacts under the effect of external micro-oscillation.
Jangwon LEE Kugjin YUN Doug Young SUH Kyuheon KIM
This letter proposes a new delivery format in order to realize unified transmissions of stereoscopic video contents over a dynamic adaptive streaming scheme. With the proposed delivery format, various forms of stereoscopic video contents regardless of their encoding and composition types can be delivered over the current dynamic adaptive streaming scheme. In addition, the proposed delivery format supports dynamic and efficient switching between 2D and 3D sequences in an interoperable manner for both 2D and 3D digital devices, regardless of their capabilities. This letter describes the designed delivery format and shows dynamic interoperable applications for 2D and 3D mixed contents with the implemented system in order to verify its features and efficiency.
Xin-Gang WANG Fei WANG Rui JIA Rui CHEN Tian ZHI Hai-Gang YANG
This paper proposes a coarse-fine Time-to-Digital Converter (TDC), based on a Ring-Tapped Delay Line (RTDL). The TDC achieves the picosecond's level timing resolution and microsecond's level dynamic range at low cost. The TDC is composed of two coarse time measurement blocks, a time residue generator, and a fine time measurement block. In the coarse blocks, RTDL is constructed by redesigning the conventional Tapped Delay Line (TDL) in a ring structure. A 12-bit counter is employed in one of the two coarse blocks to count the cycle times of the signal traveling in the RTDL. In this way, the input range is increased up to 20.3µs without use of an external reference clock. Besides, the setup time of soft-edged D-flip-flops (SDFFs) adopted in RTDL is set to zero. The adjustable time residue generator picks up the time residue of the coarse block and propagates the residue to the fine block. In the fine block, we use a Vernier Ring Oscillator (VRO) with MOS capacitors to achieve a scalable timing resolution of 11.8ps (1 LSB). Experimental results show that the measured characteristic curve has high-level linearity; the measured DNL and INL are within ± 0.6 LSB and ± 1.5 LSB, respectively. When stimulated by constant interval input, the standard deviation of the system is below 0.35 LSB. The dead time of the proposed TDC is less than 650ps. When operating at 5 MSPS at 3.3V power supply, the power consumption of the chip is 21.5mW. Owing to the use of RTDL and VRO structures, the chip core area is only 0.35mm × 0.28mm in a 0.35µm CMOS process.
Jhin-Fang HUANG Wen-Cheng LAI Kun-Jie HUANG
A 5.6-GHz 1-V balanced LC-tank Colpitts voltage controlled oscillator is designed and implemented with a TSMC 0.18-µm CMOS process. This proposed Colpitts VCO circuit adopts two single-ended complementary LC-tank VCOs coupled by two pairs of varactors. The proposed VCO operates at low power consumption because it has the same dc current path as the np-MOSFETs. The Measured results of the proposed VCO achieve tuning range of 670 MHz from 5.23 to 5.9 GHz while the controlled voltage is tuned from 0 to 1-V, phase noise of -118.8 dBc/Hz at 1 MHz offset frequency from the carrier of 5.6 GHz and output power of -10.97 dBm at the supply voltage of 1 V. The power consumption of the core circuit is 1.79 mW and the chip area including pads is 0.451 (0.55 0.82) mm2.
Akio OHTA Katsunori MAKIHARA Seiichi MIYAZAKI Masao SAKURABA Junichi MUROTA
An SiO2/Si-cap/Si0.55Ge0.45 heterostructure was fabricated on p-type Si(100) and strained silicon on insulator (SOI) substrates by low pressure chemical vapor deposition (LPCVD) and subsequent thermal oxidation in an O2 + H2 gas mixture. Chemical bonding features and valence band offsets in the heterostructures were evaluated by using high-resolution x-ray photoelectron spectroscopy (XPS) measurements and thinning the stack layers with a wet chemical solution.
Kuniaki HASHIMOTO Akio OHTA Hideki MURAKAMI Seiichiro HIGASHI Seiichi MIYAZAKI
As means to control interface reactions between HfO2 and Ge(100), chemical vapor deposition (CVD) of ultrathin Ta-rich oxide using Tri (tert-butoxy) (tert-butylimido) tantalum (Ta-TTT) on chemically-cleaned Ge(100) has been conducted prior to atomic-layer controlled CVD of HfO2 using tetrakis (ethylmethylamino) hafnium (TEMA-Hf) and O3. The XPS analysis of chemical bonding features of the samples after the post deposition N2 annealing at 300 confirms the formation of TaGexOy and the suppression of the interfacial GeO2 layer growth. The energy band structure of HfO2/TaGexOy/Ge was determined by the combination of the energy bandgaps of HfO2 and TaGexOy measured from energy loss signals of O 1s photoelectrons and from optical absorption spectra and the valence band offsets at each interface measured from valence band spectra. From the capacitance-voltage (C-V) curves of Pt-gate MIS capacitors with different HfO2 thicknesses, the thickness reduction of TaGexOy with a relative dielectric constant of 9 is a key to obtain an equivalent SiO2 thickness (EOT) below 0.7 nm.
Motoki FUKUSIMA Akio OHTA Katsunori MAKIHARA Seiichi MIYAZAKI
We have fabricated Pt/Si-rich oxide (SiOx)/TiN stacked MIM diodes and studied an impact of the structural asymmetry on their resistive switching characteristics. XPS analyses show that a TiON interfacial layer was formed during the SiOx deposition on TiN by RF-sputtering in an Ar + O2 gas mixture. After the fabrication of Pt top electrodes on the SiOx layer, and followed by an electro-forming process, distinct bi-polar type resistive switching was confirmed. For the resistive switching from high to low resistance states so called SET process, there is no need to set the current compliance. Considering higher dielectric constant of TiON than SiOx, the interfacial TiON layer can contribute to regulate the current flow through the diode. The clockwise resistive switching, in which the reduction and oxidation (Red-Ox) reactions can occur near the TiN bottom electrode, shows lower RESET voltages and better switching endurance than the counter-clockwise switching where the Red-Ox reaction can take place near the top Pt electrode. The result implies a good repeatable nature of Red-Ox reactions at the interface between SiOx and TiON/TiN in consideration of relatively high diffusibility of oxygen atoms through Pt.