Ippei HAMAMOTO Masaki KAWAMURA
An autoencoder has the potential ability to compress and decompress information. In this work, we consider the process of generating a stego-image from an original image and watermarks as compression, and the process of recovering the original image and watermarks from the stego-image as decompression. We propose embedder and extractor neural networks based on the autoencoder. The embedder network learns mapping from the DCT coefficients of the original image and a watermark to those of the stego-image. The extractor network learns mapping from the DCT coefficients of the stego-image to the watermark. Once the proposed neural network has been trained, the network can embed and extract the watermark into unlearned test images. We investigated the relation between the number of neurons and network performance by computer simulations and found that the trained neural network could provide high-quality stego-images and watermarks with few errors. We also evaluated the robustness against JPEG compression and found that, when suitable parameters were used, the watermarks were extracted with an average BER lower than 0.01 and image quality over 35 dB when the quality factor Q was over 50. We also investigated how to represent the watermarks in the stego-image by our neural network. There are two possibilities: distributed representation and sparse representation. From the results of investigation into the output of the stego layer (3rd layer), we found that the distributed representation emerged at an early learning step and then sparse representation came out at a later step.
Jaihyun PARK Bonhwa KU Youngsaeng JIN Hanseok KO
Side scan sonar using low frequency can quickly search a wide range, but the images acquired are of low quality. The image super resolution (SR) method can mitigate this problem. The SR method typically uses sparse coding, but accurately estimating sparse coefficients incurs substantial computational costs. To reduce processing time, we propose a region-selective sparse coding based SR system that emphasizes object regions. In particular, the region that contains interesting objects is detected for side scan sonar based underwater images so that the subsequent sparse coding based SR process can be selectively applied. Effectiveness of the proposed method is verified by the reduced processing time required for image reconstruction yet preserving the same level of visual quality as conventional methods.
This paper proposes a block-permutation-based encryption (BPBE) scheme for the encryption-then-compression (ETC) system that enhances the color scrambling. A BPBE image can be obtained through four processes, positional scrambling, block rotation/flip, negative-positive transformation, and color component shuffling, after dividing the original image into multiple blocks. The proposed scheme scrambles the R, G, and B components independently in positional scrambling, block rotation/flip, and negative-positive transformation, by assigning different keys to each color component. The conventional scheme considers the compression efficiency using JPEG and JPEG 2000, which need a color conversion before the compression process by default. Therefore, the conventional scheme scrambles the color components identically in each process. In contrast, the proposed scheme takes into account the RGB-based compression, such as JPEG-LS, and thus can increase the extent of the scrambling. The resilience against jigsaw puzzle solver (JPS) can consequently be increased owing to the wider color distribution of the BPBE image. Additionally, the key space for resilience against brute-force attacks has also been expanded exponentially. Furthermore, the proposed scheme can maintain the JPEG-LS compression efficiency compared to the conventional scheme. We confirm the effectiveness of the proposed scheme by experiments and analyses.
Luo CHEN Ye WU Wei XIONG Ning JING
In terms of spatial online aggregation, traditional stand-alone serial methods gradually become limited. Although parallel computing is widely studied nowadays, there scarcely has research conducted on the index-based parallel online aggregation methods, specifically for spatial data. In this letter, a parallel multilevel indexing method is proposed to accelerate spatial online aggregation analyses, which contains two steps. In the first step, a parallel aR tree index is built to accelerate aggregate query locally. In the second step, a multilevel sampling data pyramid structure is built based on the parallel aR tree index, which contribute to the concurrent returned query results with certain confidence degree. Experimental and analytical results verify that the methods are capable of handling billion-scale data.
This letter proposes a novel speech enhancement system based on the ‘L’ shaped triple-microphone. The modified coherence-based algorithm and the first-order differential beamforming are combined to filter the spatial distributed noise. The experimental results reveal that the proposed algorithm achieves significant performance in spatial filtering under different noise scenarios.
In this study, spatially coupled low-density parity-check (SC-LDPC) codes on the two-dimensional array erasure (2DAE) channel are devised, including a method for generating new SC-LDPC codes with a restriction on the check node constraint. A density evolution analysis confirms the improvement in the threshold of the proposed two-dimensional SC-LDPC code ensembles over the one-dimensional SC-LDPC code ensembles. We show that the BP threshold of the proposed codes can approach the corresponding maximum a posteriori (MAP) threshold of the original residual graph on the 2DAE channel. Moreover, we show that the rates of the residual graph of the two-dimensional LDPC block code ensemble are smaller than those of the one-dimensional LDPC block code ensemble. In other words, a high performance can be obtained by choosing the two-dimensional SC-LDPC codes.
Ryo SHIBATA Gou HOSOYA Hiroyuki YASHIMA
Racetrack memory (RM) has attracted much attention. In RM, insertion and deletion (ID) errors occur as a result of an unstable reading process and are called position errors. In this paper, we first define a probabilistic channel model of ID errors in RM with multiple read-heads (RHs). Then, we propose a joint iterative decoding algorithm for spatially coupled low-density parity-check (SC-LDPC) codes over such a channel. We investigate the asymptotic behaviors of SC-LDPC codes under the proposed decoding algorithm using density evolution (DE). With DE, we reveal the relationship between the number of RHs and achievable information rates, along with the iterative decoding thresholds. The results show that increasing the number of RHs provides higher decoding performances, although the proposed decoding algorithm requires each codeword bit to be read only once regardless of the number of RHs. Moreover, we show the performance improvement produced by adjusting the order of the SC-LDPC codeword bits in RM.
Yuta NAKAHARA Toshiyasu MATSUSHIMA
Spatially “Mt. Fuji” coupled (SFC) low density parity check (LDPC) codes are constructed as a chain of block LDPC codes. A difference between the SFC-LDPC codes and the original spatially coupled (SC) LDPC codes is code lengths of the underlying block LDPC codes. The code length of the block LDPC code at the middle of the chain is larger than that at the end of the chain. It is experimentally confirmed that the bit error probability in the error floor region of the SFC-LDPC code is lower than that of the SC-LDPC code whose code length and design rate are the same as those of the SFC-LDPC code. In this letter, we calculate the weight distribution of the SFC-LDPC code and try to explain causes of the low bit error rates of the SFC-LDPC code.
Yuma ABE Hiroyuki TSUJI Amane MIURA Shuichi ADACHI
We propose an approach to allocate bandwidth for a satellite communications (SATCOM) system that includes the recent high-throughput satellite (HTS) with frequency flexibility. To efficiently operate the system, we manage the limited bandwidth resources available for SATCOM by employing a control method that allows the allocated bandwidths to exceed the communication demand of user terminals per HTS beam. To this end, we consider bandwidth allocation for SATCOM as an optimal control problem. Then, assuming that the model of communication requests is available, we propose an optimal control method by combining model predictive control and sparse optimization. The resulting control method enables the efficient use of the limited bandwidth and reduces the bandwidth loss and number of control actions for the HTS compared to a setup with conventional frequency allocation and no frequency flexibility. Furthermore, the proposed method allows to allocate bandwidth depending on various control objectives and beam priorities by tuning the corresponding weighting matrices. These findings were verified through numerical simulations by using a simple time variation model of the communication requests and predicted aircraft communication demand obtained from the analysis of actual flight tracking data.
Datacenter growth in traffic and scale is driving innovations in constructing tightly-coupled facilities with low-latency communication for different specific applications. A famous custom design is rackscale (RS) computing by gathering key server resource components into different resource pools. Such a resource-pooling implementation requires a new software stack to manage resource discovery, resource allocation and data communication. The reconfiguration of interconnection networks on their components is potentially needed to support the above demand in RS. In this context as an evolution of the original RS architecture the inter-rackscale (IRS) architecture, which disaggregates hardware components into different racks according to their own areas, has been proposed. The heart of IRS is to use a limited number of free-space optics (FSO) channels for wireless connections between different resource racks, via which selected pairs of racks can communicate directly and thus resource-pooling requirements are met without additional software management. In this study we evaluate the influences of FSO links on IRS networks. Evaluation results show that FSO links reduce average communication hop count for user jobs, which is close to the best possible value of 2 hops and thus provides comparable benchmark performance to that of the counterpart RS architecture. In addition, if four FSO terminals per rack are allowed, the CPU/SSD (GPU) interconnection latency is reduced by 25.99% over Fat-tree and by 67.14% over 2-D Torus. We also present the advantage of an FSO-equipped IRS system in average turnaround time of dispatched jobs for given sets of benchmark workloads.
Qian CHENG Jiang ZHU Junshan LUO
A novel secure spatial modulation (SM) scheme based on dynamic multi-parameter weighted-type fractional Fourier transform (WFRFT), abbreviated as SMW, is proposed. Each legitimate transmitter runs WFRFT on the spatially modulated super symbols before transmit antennas, the parameters of which are dynamically updated using the transmitting bits. Each legitimate receiver runs inverse WFRFT to demodulate the received signals, the parameters of which are also dynamically generated using the recovered bits with the same updating strategies as the transmitter. The dynamic update strategies of WFRFT parameters are designed. As a passive eavesdropper is ignorant of the initial WFRFT parameters and the dynamic update strategies, which are indicated by the transmitted bits, it cannot recover the original information, thereby guaranteeing the communication security between legitimate transmitter and receiver. Besides, we formulate the maximum likelihood (ML) detector and analyze the secrecy capacity and the upper bound of BER. Simulations demonstrate that the proposed SMW scheme can achieve a high level of secrecy capacity and maintain legitimate receiver's low BER performance while deteriorating the eavesdropper's BER.
Xuewan ZHANG Wenping GE Xiong WU Wenli DAI
Sparse code multiple access (SCMA) based on the message passing algorithm (MPA) for multiuser detection is a competitive non-orthogonal multiple access technique for fifth-generation wireless communication networks Among the existing multiuser detection schemes for uplink (UP) SCMA systems, the serial MPA (S-MPA) scheme, where messages are updated sequentially, generally converges faster than the conventional MPA (C-MPA) scheme, where all messages are updated in a parallel manner. In this paper, the optimization of message scheduling in the S-MPA scheme is proposed. Firstly, some statistical results for the probability density function (PDF) of the received signal are obtained at various signal-to-noise ratios (SNR) by using the Monte Carlo method. Then, based on the non-orthogonal property of SCMA, the data mapping relationship between resource nodes and user nodes is comprehensively analyzed. A partial codeword transmission of S-MPA (PCTS-MPA) with threshold decision scheme of PDF is proposed and verified. Simulations show that the proposed PCTS-MPA not only reduces the complexity of MPA without changing the bit error ratio (BER), but also has a faster convergence than S-MPA, especially at high SNR values.
Yukihiro BANDOH Yuichi SAYAMA Seishi TAKAMURA Atsushi SHIMIZU
It is essential to improve intra prediction performance to raise the efficiency of video coding. In video coding standards such as H.265/HEVC, intra prediction is seen as an extension of directional prediction schemes, examples include refinement of directions, planar extension, filtering reference sampling, and so on. From the view point of reducing prediction error, some improvements on intra prediction for standardized schemes have been suggested. However, on the assumption that the correlation between neighboring pixels are static, these conventional methods use pre-defined predictors regardless of the image being encoded. Therefore, these conventional methods cannot reduce prediction error if the images break the assumption made in prediction design. On the other hand, adaptive predictors that change the image being encoded may offer poor coding efficiency due to the overhead of the additional information needed for adaptivity. This paper proposes an adaptive intra prediction scheme that resolves the trade-off between prediction error and adaptivity overhead. The proposed scheme is formulated as a constrained optimization problem that minimizes prediction error under sparsity constraints on the prediction coefficients. In order to solve this problem, a novel solver is introduced as an extension of LARS for multi-class support. Experiments show that the proposed scheme can reduce the amount of encoded bits by 1.21% to 3.24% on average compared to HM16.7.
Gang WANG Min-Yao NIU Jian GAO Fang-Wei FU
Compressed sensing theory provides a new approach to acquire data as a sampling technique and makes sure that a sparse signal can be reconstructed from few measurements. The construction of compressed sensing matrices is a main problem in compressed sensing theory (CS). In this paper, the deterministic constructions of compressed sensing matrices based on affine singular linear space over finite fields are presented and a comparison is made with the compressed sensing matrices constructed by DeVore based on polynomials over finite fields. By choosing appropriate parameters, our sparse compressed sensing matrices are superior to the DeVore's matrices. Then we use a new formulation of support recovery to recover the support sets of signals with sparsity no more than k on account of binary compressed sensing matrices satisfying disjunct and inclusive properties.
In this paper, we consider coded multi-input multi-output (MIMO) systems with low-density parity-check (LDPC) codes and space-time block code (STBC) in MIMO channels. The LDPC code takes the role of a channel code while the STBC provides spatial-temporal diversity. The performance of such coded MIMO system has been shown to be excellent in the past. In this paper, we present a performance analysis for an upper bound on probability of error for coded MIMO schemes. Compared to previous works, the proposed approach for the upper bound can avoid any explicit weight enumeration of codewords and provide a significant step for the upper bound by using a multinomial theorem. In addition, we propose a log domain convolution that enables us to handle huge numbers, e.g., 10500. Comparison of system simulations and numerical evaluations shows that the proposed upper bound is applicable for various coded MIMO systems.
Takahiro OGAWA Sho TAKAHASHI Naofumi WADA Akira TANAKA Miki HASEYAMA
Binary sparse representation based on arbitrary quality metrics and its applications are presented in this paper. The novelties of the proposed method are twofold. First, the proposed method newly derives sparse representation for which representation coefficients are binary values, and this enables selection of arbitrary image quality metrics. This new sparse representation can generate quality metric-independent subspaces with simplification of the calculation procedures. Second, visual saliency is used in the proposed method for pooling the quality values obtained for all of the parts within target images. This approach enables visually pleasant approximation of the target images more successfully. By introducing the above two novel approaches, successful image approximation considering human perception becomes feasible. Since the proposed method can provide lower-dimensional subspaces that are obtained by better image quality metrics, realization of several image reconstruction tasks can be expected. Experimental results showed high performance of the proposed method in terms of two image reconstruction tasks, image inpainting and super-resolution.
Liu YANG Hang ZHANG Yang CAI Qiao SU
In this letter, a new semi-blind approach incorporating the bounded nature of communication sources with the distance between the equalizer outputs and the training sequence is proposed. By utilizing the sparsity property of l1-norm cost function, the proposed algorithm can outperform the semi-blind method based on higher-order statistics (HOS) criterion especially for transmitting sources with non-constant modulus. Experimental results demonstrate that the proposed method shows superior performance over the HOS based semi-blind method and the classical training-based method for QPSK and 16QAM sources equalization. While for 64QAM signal inputs, the proposed algorithm exhibits its superiority in low signal-to-noise-ratio (SNR) conditions compared with the training-based method.
In this letter, an effective low bit-rate image restoration method is proposed, in which image denoising and subspace regression learning are combined. The proposed framework has two parts: image main structure estimation by classical NLM denoising and texture component prediction by subspace joint regression learning. The local regression function are learned from denoised patch to original patch in each subspace, where the corresponding compression image patches are employed to generate anchoring points by the dictionary learning approach. Moreover, we extent Extreme Support Vector Regression (ESVR) as multi-variable nonlinear regression to get more robustness results. Experimental results demonstrate the proposed method achieves favorable performance compared with other leading methods.
Naruki SASAGAWA Kentaro TANI Takashi IMAMURA Yoshinobu MAEDA
Reproducing quadruped locomotion from an engineering viewpoint is important not only to control robot locomotion but also to clarify the nonlinear mechanism for switching between locomotion patterns. In this paper, we reproduced a quadruped locomotion pattern, gallop, using a central pattern generator (CPG) hardware network based on the abelian group Z4×Z2, originally proposed by Golubitsky et al. We have already used the network to generate three locomotion patterns, walk, trot, and bound, by controlling the voltage, EMLR, inputted to all CPGs which acts as a signal from the midbrain locomotor region (MLR). In order to generate the gallop and canter patterns, we first analyzed the network symmetry using group theory. Based on the results of the group theory analysis, we desymmetrized the contralateral couplings of the CPG network using a new parameter in addition to EMLR, because, whereas the walk, trot, and bound patterns were able to be generated from the spatio-temporal symmetry of the product group Z4×Z2, the gallop and canter patterns were not. As a result, using a constant element $hat{kappa}$ on Z2, the gallop and canter locomotion patterns were generated by the network on ${f Z}_4+hat{kappa}{f Z}_4$, and actually in this paper, the gallop locomotion pattern was generated on the actual circuit.
Kotoko YAMADA Nuttapong ATTRAPADUNG Keita EMURA Goichiro HANAOKA Keisuke TANAKA
Attribute-based encryption (ABE), a cryptographic primitive, realizes fine-grained access control. Because of its attractive functionality, many systems based on ABE have been constructed to date. In such cryptographic systems, revocation functionality is indispensable to handle withdrawal of users, secret key exposure, and others. Although many ABE schemes with various functionalities have been proposed, only a few of these are revocable ABE (RABE). In this paper, we propose two generic constructions of RABE from ABE. Our first construction employs the pair encoding framework (Attrapadung, EUROCRYPT 2014), and combines identity-based revocation and ABE via the generic conjunctive conversion of Attrapadung and Yamada (CT-RSA 2015). Our second construction converts ABE to RABE directly when ABE supports Boolean formulae. Because our constructions preserve functionalities of the underlying ABE, we can instantiate various fully secure RABE schemes for the first time, e.g., supporting regular languages, with unbounded attribute size and policy structure, and with constant-size ciphertext and secret key.