Ayumi YAMAZAKI Yuki HAYASHI Kazuhisa SETA
When moving through space, we have to consider the route to the destination and gather real-world information to check that we are following this route correctly. In this study, we define spatial movement skill as this ability to associate information like maps and memory with real-world objects like signs and buildings. Without adequate spatial movement skills, people are liable to experience difficulties such as going around in circles and getting lost. Alleviating this problem requires better spatial movement skills, but few studies have considered how this can be achieved or supported, and we have found no research into how the improvement of these skills can be supported in practice. Since spatial cognition is always necessary for spatial movement, our aim in this study is to develop a spatial movement skill training system. To this end, we first overviewed the use of knowledge gained from the research literature on spatial cognition. From these related studies, we systematically summarized issues and challenges related to spatial movement and the stages of spatial information processing, and created a new learning model for the improvement of spatial movement skills. Then, based on this model, we developed a system that uses position information to support the improvement of spatial movement skills. Initial experiments with this system confirmed that its use promotes recognition from a global viewpoint to the current location and direction, resulting in the formation of a cognitive map, which suggests that it has an effect on spatial movement skills.
Keiichiro INAGAKI Takayuki KANNON Yoshimi KAMIYAMA Shiro USUI
The eyes are continuously fluctuating during fixation. These fluctuations are called fixational eye movements. Fixational eye movements consist of tremors, microsaccades, and ocular drifts. Fixational eye movements aid our vision by shaping spatial-temporal characteristics. Here, it is known that photoreceptors, the first input layer of the retinal network, have a spatially non-uniform cell alignment called the cone mosaic. The roles of fixational eye movements are being gradually uncovered; however, the effects of the cone mosaic are not considered. Here we constructed a large-scale visual system model to explore the effect of the cone mosaic on the visual signal processing associated with fixational eye movements. The visual system model consisted of a brainstem, eye optics, and photoreceptors. In the simulation, we focused on the roles of fixational eye movements on signal processing with sparse sampling by photoreceptors given their spatially non-uniform mosaic. To analyze quantitatively the effect of fixational eye movements, the capacity of information processing in the simulated photoreceptor responses was evaluated by information rate. We confirmed that the information rate by sparse sampling due to the cone mosaic was increased with fixational eye movements. We also confirmed that the increase of the information rate was derived from the increase of the responses for the edges of objects. These results suggest that visual information is already enhanced at the level of the photoreceptors by fixational eye movements.
Songlin DU Yuan LI Takeshi IKENAGA
High frame rate and ultra-low delay are the most essential requirements for building excellent human-machine-interaction systems. As a state-of-the-art local keypoint detection and feature extraction algorithm, A-KAZE shows high accuracy and robustness. Nonlinear scale space is one of the most important modules in A-KAZE, but it not only has at least one frame delay and but also is not hardware friendly. This paper proposes a hardware oriented nonlinear scale space for high frame rate and ultra-low delay A-KAZE matching system. In the proposed matching system, one part of nonlinear scale space is temporally forward and calculated in the previous frame (proposal #1), so that the processing delay is reduced to be less than 1 ms. To improve the matching accuracy affected by proposal #1, pre-adjustment of nonlinear scale (proposal #2) is proposed. Previous two frames are used to do motion estimation to predict the motion vector between previous frame and current frame. For further improvement of matching accuracy, pixel-level pre-adjustment (proposal #3) is proposed. The pre-adjustment changes from block-level to pixel-level, each pixel is assigned an unique motion vector. Experimental results prove that the proposed matching system shows average matching accuracy higher than 95% which is 5.88% higher than the existing high frame rate and ultra-low delay matching system. As for hardware performance, the proposed matching system processes VGA videos (640×480 pixels/frame) at the speed of 784 frame/second (fps) with a delay of 0.978 ms/frame.
Kazuki KAWAMURA Takashi MATSUBARA Kuniaki UEHARA
Action recognition using skeleton data (3D coordinates of human joints) is an attractive topic due to its robustness to the actor's appearance, camera's viewpoint, illumination, and other environmental conditions. However, skeleton data must be measured by a depth sensor or extracted from video data using an estimation algorithm, and doing so risks extraction errors and noise. In this work, for robust skeleton-based action recognition, we propose a deep state-space model (DSSM). The DSSM is a deep generative model of the underlying dynamics of an observable sequence. We applied the proposed DSSM to skeleton data, and the results demonstrate that it improves the classification performance of a baseline method. Moreover, we confirm that feature extraction with the proposed DSSM renders subsequent classifications robust to noise and missing values. In such experimental settings, the proposed DSSM outperforms a state-of-the-art method.
Makoto MIYAGOSHI Hidekazu MURATA
The packet error rate (PER) performance of multi-hop STBC based cooperative and diversity relaying systems are studied. These systems consist of a source, a destination, and two relay stations in each hop. From in-lab experiments, it is confirmed that the cooperative relaying system has better PER performance than the diversity relaying system with highly correlated channels.
Masahiro TAKIGAWA Shinsuke IBI Seiichi SAMPEI
This paper proposes a successive interference cancellation (SIC) of independent component analysis (ICA) aided spatial division multiple access (SDMA) for Gaussian filtered frequency shift keying (GFSK) in Bluetooth low energy (BLE) systems. The typical SDMA scheme requires estimations of channel state information (CSI) using orthogonal pilot sequences. However, the orthogonal pilot is not embedded in the BLE packet. This fact motivates us to add ICA detector into BLE systems. In this paper, focusing on the covariance matrix of ICA outputs, SIC can be applied with Cholesky decomposition. Then, in order to address the phase ambiguity problems created by the ICA process, we propose a differential detection scheme based on the MAP algorithm. In practical scenarios, it is subject to carrier frequency offset (CFO) as well as symbol timing offset (STO) induced by the hardware impairments present in the BLE peripherals. The packet error rate (PER) performance is evaluated by computer simulations when BLE peripherals simultaneously communicate in the presence of CFO and STO.
Jing SUN Yi-mu JI Shangdong LIU Fei WU
Software defect prediction (SDP) plays a vital role in allocating testing resources reasonably and ensuring software quality. When there are not enough labeled historical modules, considerable semi-supervised SDP methods have been proposed, and these methods utilize limited labeled modules and abundant unlabeled modules simultaneously. Nevertheless, most of them make use of traditional features rather than the powerful deep feature representations. Besides, the cost of the misclassification of the defective modules is higher than that of defect-free ones, and the number of the defective modules for training is small. Taking the above issues into account, we propose a cost-sensitive and sparse ladder network (CSLN) for SDP. We firstly introduce the semi-supervised ladder network to extract the deep feature representations. Besides, we introduce the cost-sensitive learning to set different misclassification costs for defective-prone and defect-free-prone instances to alleviate the class imbalance problem. A sparse constraint is added on the hidden nodes in ladder network when the number of hidden nodes is large, which enables the model to find robust structures of the data. Extensive experiments on the AEEEM dataset show that the CSLN outperforms several state-of-the-art semi-supervised SDP methods.
In this paper, we propose an effective and robust method of spatial feature extraction for acoustic scene analysis utilizing partially synchronized and/or closely located distributed microphones. In the proposed method, a new cepstrum feature utilizing a graph-based basis transformation to extract spatial information from distributed microphones, while taking into account whether any pairs of microphones are synchronized and/or closely located, is introduced. Specifically, in the proposed graph-based cepstrum, the log-amplitude of a multichannel observation is converted to a feature vector utilizing the inverse graph Fourier transform, which is a method of basis transformation of a signal on a graph. Results of experiments using real environmental sounds show that the proposed graph-based cepstrum robustly extracts spatial information with consideration of the microphone connections. Moreover, the results indicate that the proposed method more robustly classifies acoustic scenes than conventional spatial features when the observed sounds have a large synchronization mismatch between partially synchronized microphone groups.
Xinxin HU Caixia LIU Shuxin LIU Xiaotao CHENG
More and more attacks are found due to the insecure channel between different network domains in legacy mobile network. In this letter, we discover an attack exploiting SUCI to track a subscriber in 5G network, which is directly caused by the insecure air channel. To cover this issue, a secure authentication scheme is proposed utilizing the existing PKI mechanism. Not only dose our protocol ensure the authentication signalling security in the channel between UE and SN, but also SN and HN. Further, formal methods are adopted to prove the security of the proposed protocol.
Jun IWAMOTO Yuma KIKUTANI Renyuan ZHANG Yasuhiko NAKASHIMA
A paradigm shift toward edge computing infrastructures that prioritize small footprint and scalable/easy-to-estimate performance is increasing. In this paper, we propose the following to improve the footprint and the scalability of systolic arrays: (1) column multithreading for reducing the number of physical units and maintaining the performance even for back-to-back floating-point accumulations; (2) a cascaded peer-to-peer AXI bus for a scalable multichip structure and an intra-chip parallel local memory bus for low latency; (3) multilevel loop control in any unit for reducing the startup overhead and adaptive operation shifting for efficient reuse of local memories. We designed a systolic array with a single column × 64 row configuration with Verilog HDL, evaluated the frequency and the performance on an FPGA attached to a ZYNQ system as an AXI slave device, and evaluated the area with a TSMC 28nm library and memory generator and identified the following: (1) the execution speed of a matrix multiplication/a convolution operation/a light-field depth extraction, whose size larger than the capacity of the local memory, is 6.3× / 9.2× / 6.6× compared with a similar systolic array (EMAX); (2) the estimated speed with a 4-chip configuration is 19.6× / 16.0× / 8.5×; (3) the size of a single-chip is 8.4 mm2 (0.31× of EMAX) and the basic performance per area is 2.4×.
Yoshitake OKI Yuto ABE Kazuki YAMAMOTO Kohei YAMAMOTO Tomoya SHIRAKAWA Akimasa YOSHIDA Keiji KIMURA Hironori KASAHARA
Utilization of local memory from real-time embedded systems to high performance systems with multi-core processors has become an important factor for satisfying hard deadline constraints. However, challenges lie in the area of efficiently managing the memory hierarchy, such as decomposing large data into small blocks to fit onto local memory and transferring blocks for reuse and replacement. To address this issue, this paper presents a compiler optimization method that automatically manage local memory of multi-core processors. The method selects and maps multi-dimensional data onto software specified memory blocks called Adjustable Blocks. These blocks are hierarchically divisible with varying sizes defined by the features of the input application. Moreover, the method introduces mapping structures called Template Arrays to maintain the indices of the decomposed multi-dimensional data. The proposed work is implemented on the OSCAR automatic parallelizing compiler and evaluations were performed on the Renesas RP2 8-core processor. Experimental results from NAS Parallel Benchmark, SPEC benchmark, and multimedia applications show the effectiveness of the method, obtaining maximum speed-ups of 20.44 with 8 cores utilizing local memory from single core sequential versions that use off-chip memory.
This paper proposes a simple source data exchange method for channel switching in space-time block code. If one transmits source data on another antenna, then the receiver should change combining method in order to adapt it. No one except knowing the channel switching sequence can decode the received data correctly. In case of exchanging data for channel switching, four orthogonal frequency division multiplexing symbols are exchanged according to a format of space-time block code. In this paper, I proposes two simple sign exchanges without exchanging four orthogonal-frequency division multiplexing symbols which occurs a different combining and channel switching method in the receiver.
Guizhong ZHANG Baoxian WANG Zhaobo YAN Yiqiang LI Huaizhi YANG
In this work, we present one novel rust detection method based upon one-class classification and L2 sparse representation (SR) with decision fusion. Firstly, a new color contrast descriptor is proposed for extracting the rust features of steel structure images. Considering that the patterns of rust features are more simplified than those of non-rust ones, one-class support vector machine (SVM) classifier and L2 SR classifier are designed with these rust image features, respectively. After that, a multiplicative fusion rule is advocated for combining the one-class SVM and L2 SR modules, thereby achieving more accurate rust detecting results. In the experiments, we conduct numerous experiments, and when compared with other developed rust detectors, the presented method can offer better rust detecting performances.
Takayuki NAKACHI Yukihiro BANDOH Hitoshi KIYA
In this paper, we propose secure dictionary learning based on a random unitary transform for sparse representation. Currently, edge cloud computing is spreading to many application fields including services that use sparse coding. This situation raises many new privacy concerns. Edge cloud computing poses several serious issues for end users, such as unauthorized use and leak of data, and privacy failures. The proposed scheme provides practical MOD and K-SVD dictionary learning algorithms that allow computation on encrypted signals. We prove, theoretically, that the proposal has exactly the same dictionary learning estimation performance as the non-encrypted variant of MOD and K-SVD algorithms. We apply it to secure image modeling based on an image patch model. Finally, we demonstrate its performance on synthetic data and a secure image modeling application for natural images.
We propose a key-policy attribute-based encryption (KP-ABE) scheme with constant-size ciphertexts, whose almost tightly semi-adaptive security is proven under the decisional linear (DLIN) assumption in the standard model. The access structure is expressive, that is given by non-monotone span programs. It also has fast decryption, i.e., a decryption includes only a constant number of pairing operations. As an application of our KP-ABE construction, we also propose an efficient, fully secure attribute-based signatures with constant-size secret (signing) keys from the DLIN. For achieving the above results, we extend the sparse matrix technique on dual pairing vector spaces. In particular, several algebraic properties of an elaborately chosen sparse matrix group are applied to the dual system security proofs.
Shu FUJITA Keita TAKAHASHI Toshiaki FUJII
A light field, which is equivalent to a dense set of multi-view images, has various applications such as depth estimation and 3D display. One of the essential problems in light field applications is light field interpolation, i.e., view interpolation. The interpolation accuracy is enhanced by exploiting an inherent property of a light field. One example is that an epipolar plane image (EPI), which is a 2D subset of the 4D light field, consists of many lines, and these lines have almost the same slope in a local region. This structure induces a sparse representation in the frequency domain, where most of the energy resides on a line passing through the origin. On the basis of this observation, we propose a group sparsity prior suitable for light fields to exploit their line structure fully for interpolation. Specifically, we designed the directional groups in the discrete Fourier transform (DFT) domain so that the groups can represent the concentration of the energy, and we thereby formulated an LF interpolation problem as an overlapping group lasso. We also introduce several techniques to improve the interpolation accuracy such as applying a window function, determining group weights, expanding processing blocks, and merging blocks. Our experimental results show that the proposed method can achieve better or comparable quality as compared to state-of-the-art LF interpolation methods such as convolutional neural network (CNN)-based methods.
Pengyu WANG Hongqing ZHU Ning CHEN
A novel superpixel segmentation approach driven by uniform mixture model with spatially constrained (UMMS) is proposed. Under this algorithm, each observation, i.e. pixel is first represented as a five-dimensional vector which consists of colour in CLELAB space and position information. And then, we define a new uniform distribution through adding pixel position, so that this distribution can describe each pixel in input image. Applied weighted 1-Norm to difference between pixels and mean to control the compactness of superpixel. In addition, an effective parameter estimation scheme is introduced to reduce computational complexity. Specifically, the invariant prior probability and parameter range restrict the locality of superpixels, and the robust mean optimization technique ensures the accuracy of superpixel boundaries. Finally, each defined uniform distribution is associated with a superpixel and the proposed UMMS successfully implements superpixel segmentation. The experiments on BSDS500 dataset verify that UMMS outperforms most of the state-of-the-art approaches in terms of segmentation accuracy, regularity, and rapidity.
Ran SUN Hiromasa HABUCHI Yusuke KOZAWA
For high transmission efficiency, good modulation schemes are expected. This paper focuses on the enhancement of the modulation scheme of free space optical turbo coded system. A free space optical turbo coded system using a new signaling scheme called hybrid PPM-OOK signaling (HPOS) is proposed and investigated. The theoretical formula of the bit error rate of the uncoded HPOS system is derived. The effective information rate performances (i.e. channel capacity) of the proposed HPOS turbo coded system are evaluated through computer simulation in free space optical channel, with weak, moderate, strong scintillation. The performance of the proposed HPOS turbo coded system is compared with those of the conventional OOK (On-Off Keying) turbo coded system and BPPM (Binary Pulse Position Modulation) turbo coded system. As results, the proposed HPOS turbo coded system shows the same tolerance capability to background noise and atmospheric turbulence as the conventional BPPM turbo coded system, and it has 1.5 times larger capacity.
Wei JHANG Shiaw-Wu CHEN Ann-Chen CHANG
This letter presents an improved hybrid direction of arrival (DOA) estimation scheme with computational efficiency for massive uniform linear array. In order to enhance the resolution of DOA estimation, the initial estimator based on the discrete Fourier transform is applied to obtain coarse DOA estimates by a virtual array extension for one snapshot. Then, by means of a first-order Taylor series approximation to the direction vector with the one initially estimated in a very small region, the iterative fine estimator can find a new direction vector which raises the searching efficiency. Simulation results are provided to demonstrate the effectiveness of the proposed scheme.
Yi-Xian YANG Kung-Jui PAI Ruay-Shiung CHANG Jou-Ming CHANG
A set of spanning trees of a graphs G are called completely independent spanning trees (CISTs for short) if for every pair of vertices x, y∈V(G), the paths joining x and y in any two trees have neither vertex nor edge in common, except x and y. Constructing CISTs has applications on interconnection networks such as fault-tolerant routing and secure message transmission. In this paper, we investigate the problem of constructing two CISTs in the balanced hypercube BHn, which is a hypercube-variant network and is superior to hypercube due to having a smaller diameter. As a result, the diameter of CISTs we constructed equals to 9 for BH2 and 6n-2 for BHn when n≥3.