1-5hit |
Wei-Kai CHENG Jui-Hung HUNG Yi-Hsuan CHIU
As the increasing complexity of chip design, reducing both power consumption and clock skew becomes a crucial research topic in clock network synthesis. Among various clock network synthesis approaches, clock tree has less power consumption in comparison with clock mesh structure. In contrast, clock mesh has a higher tolerance of process variation and hence is easier to satisfy the clock skew constraint. To reduce the power consumption of clock mesh network, an effective way is to minimize the wire capacitance of stub wires. In addition, integration of clock gating and register clustering techniques on clock mesh network can further reduce dynamic power consumption. In this paper, under both enable timing constraint and clock skew constraint, we propose a methodology to reduce the switching capacitance by non-uniform clock mesh synthesis, clock gate insertion and register clustering. In comparison with clock mesh synthesis and clock gating technique individually, experimental results show that our methodology can improve both the clock skew and switching capacitance efficiently.
Clock network synthesis is one of the most important and limiting factors in VLSI designs. Hence, the clock skew variation reduction is one of the most important objectives in clock distribution methodology. Cross-link insertion is proposed in [1], however, it is based on empirical methods and does not use variation information for link insertion location choice. [17] considers the delay variation, but it is slow even for small clock trees. In this paper, we propose a fast link insertion algorithm that considers the delay variation information directly during link selection process. Experimental results show that our algorithm is very fast and achieves better skew variability reduction while utilizing considerably lesser routing resources compared with existing methods.
Gunok JUNG Chunghee KIM Kyoungkuk CHAE Giho PARK Sung Bae PARK
This letter presents point diffusion clock network (PDCN) with local clock tree synthesis (CTS) scheme. The clock network is implemented with ten times wider metal line space than typical mesh networks for low power and utilized to nine times smaller area CTS execution for minimized clock skew amount. The measurement results show that skew amount of PDCN with local CTS is reduced to 36% and latency is shrunk to 45% of the amount in a 4.81 mm2 CortexA-8 core with 65 nm Samsung process.
Yongqiang LU Chin-Ngai SZE Xianlong HONG Qiang ZHOU Yici CAI Liang HUANG Jiang HU
With VLSI design development, the increasingly severe power problem requests to minimize clock routing wirelength so that both power consumption and power supply noise can be alleviated. In contrast to most of traditional works that handle this problem only in clock routing, we propose to navigate standard cell register placement to locations that enable further less clock routing wirelength and power. To minimize adverse impacts to conventional cell placement goals such as signal net wirelength and critical path delay, the register placement is carried out in the context of a quadratic placement. The proposed technique is particularly effective for the recently popular prescribed skew clock routing. Experiments on benchmark circuits show encouraging results.
Yi ZOU Yici CAI Qiang ZHOU Xianlong HONG Sheldon X.-D. TAN
This paper presents a novel approach to reducing the complexity of the transient linear circuit analysis for a hybrid structured clock network. Topology reduction is first used to reduce the complexity of the circuits and a preconditioned Krylov-subspace iterative method is then used to perform the nodal analysis on the reduced circuits. By proper selection of the simulation time step and interval based on Elmore delays, the delay of the clock signal between the clock source and the sink node as well as the clock skews between the sink nodes can be computed efficiently and accurately. Our experimental results show that the proposed algorithm is two orders of magnitude faster than HSPICE without loss of accuracy and stability. The maximum error is within 0.4% of the exact delay time.