1-18hit |
We have realized a design automation platform of hardware accelerator for pairing operation over multiple elliptic curve parameters. Pairing operation is one of the fundamental operations to realize functional encryption. However, known as a computational complexity-heavy algorithm. Also because there have been not yet identified standard parameters, we need to choose curve parameters based on the required security level and affordable hardware resources. To explore this design optimization for each curve parameter is essential. In this research, we have realized an automated design platform for pairing hardware for such purposes. Optimization results show almost equivalent to those prior-art designs by hand.
This paper proposes a low power single-ended successive approximation register (SAR) analog-to-digital converter (ADC) to replace the only analog active circuit, the comparator, with a digital circuit, which is an inverter-based comparator. The replacement helps possible design automation. The inverter threshold voltage variation impact is minimal because an SAR ADC has only one comparator, and many applications are either insensitive to the resulting ADC offset or easily corrected digitally. The proposed resetting approach mitigates leakage when the input is close to the threshold voltage. As an intrinsic headroom-free, and thus low-rail-voltage, friendly structure, an inverter-based comparator also occupies a small area. Furthermore, an 11-bit ADC was designed and manufactured through a 0.35-µm CMOS process by adopting a low-power switching procedure. The ADC achieves an FOM of 181fJ/Conv.-step at a 25kS/s sampling rate when the supply voltage VDD is 1.2V.
Because dielectrics between active layers have low thermal conductivities, there is a demand to reduce the temperature increase in three-dimensional integrated circuits (3D ICs). This paper demonstrates that, in the design of 3D ICs, different layer assignments often lead to different temperature increases. Based on this observation, we are motivated to perform temperature-aware layer assignment. Our work includes two parts. Firstly, an integer linear programming (ILP) approach that guarantees a minimum temperature increase is proposed. Secondly, a polynomial-time heuristic algorithm that reduces the temperature increase is proposed. Compared with the previous work, which does not take the temperature increase into account, the experimental results show that both our ILP approach and our heuristic algorithm produce a significant reduction in the temperature increase with a very small area overhead.
Zhen ZHANG Shouyi YIN Leibo LIU Shaojun WEI
TSV-interconnected 3D chips face problems such as high cost, low yield and large power dissipation. We propose a wireless 3D on-chip-network architecture for application-specific SoC design, using inductive-coupling interconnect instead of TSV for inter-layer communication. Primary design challenge of inductive-coupling 3D SoC is allocating wireless links in the 3D on-chip network effectively. We develop a design flow fully exploiting the design space brought by wireless links while providing flexible tradeoff for user's choice. Experimental results show that our design brings great improvement over uniform design and Sunfloor algorithm on latency (5% to 20%) and power consumption (10% to 45%).
Shouyi YIN Yang HU Zhen ZHANG Leibo LIU Shaojun WEI
Hybrid wired/wireless on-chip network is a promising communication architecture for multi-/many-core SoC. For application-specific SoC design, it is important to design a dedicated on-chip network architecture according to the application-specific nature. In this paper, we propose a heuristic wireless link allocation algorithm for creating hybrid on-chip network architecture. The algorithm can eliminate the performance bottleneck by replacing multi-hop wired paths by high-bandwidth single-hop long-range wireless links. The simulation results show that the hybrid on-chip network designed by our algorithm improves the performance in terms of both communication delay and energy consumption significantly.
Fu-Shing CHIM Tak-Kei LAM Yu-Liang WU Hongbing FAN
The digital logic rewiring technique has been shown to be one of the most powerful logic transformation methods. It has been proven that rewiring is able to further improve some already excellent results on many EDA problems, ranging from logic minimization, partitioning, FPGA technology mappings to final routings. Previous studies have shown that ATPG-based rewiring is one of the most powerful tools for logic perturbation while a graph-based rewiring engine is able to cover nearly one fifth of the target wires with 50 times runtime speedup. For some problems that only require good-enough and very quick solutions, this new rewiring technique may serve as a useful and more practical alternative. In this work, essential elements in graph-based rewiring such as rewiring patterns, pattern size and locality, etc., have been studied to understand their relationship with rewiring performance. A structural analysis on the target-alternative wire pairs discovered by ATPG-based and graph-based engines has also been conducted to analyze the structural characteristics that favor the identification of alternative wires. We have also developed a hybrid rewiring approach that can take the advantages from both ATPG-based and graph-based rewiring. Experimental results suggest that our hybrid engine is able to achieve about 50% of alternative wire coverage when compared with the state-of-the-art ATPG-based rewiring engine with only 4% of the runtime. Through applying our hybrid rewiring approach to the FGPA technology mapping problem, we could achieve similar depth level and look-up table number reductions with much shorter runtime. This shows that the fast runtime of our hybrid approach does not sacrifice the quality of certain rewiring applications.
Insoo KIM Jincheol YOO JongSoo KIM Kyusun CHOI
Threshold Inverter Quantization (TIQ) technique has been gaining its importance in high speed flash A/D converters due to its fast data conversion speed. It eliminates the need of resistor ladders for reference voltages generation which requires substantial power consumption. The key to TIQ comparators design is to generate 2n - 1 different sized TIQ comparators for an n-bit A/D converter. This paper presents a highly efficient TIQ comparator design methodology based on an analytical model as well as SPICE simulation experimental model. One can find any sets of TIQ comparators efficiently using the proposed method. A 6-bit TIQ A/D converter has been designed in a 0.18 µm standard CMOS technology using the proposed method, and compared to the previous measured results in order to verify the proposed methodology.
Mitsuyoshi KISHIHARA Isao OHTA Kuniyoshi YAMANE
This paper proposes a new type of compact waveguide directional coupler, which is constructed from two crossed E-plane rectangular waveguide with two metallic posts in the square junction and one metallic post at each port. The metallic posts in the square junction are set symmetrically along a diagonal line to obtain the directivity properties. The metallic post inserted at each input/output waveguide port can realize a matched state. Tight-coupling properties 0.79-6 dB are realized by optimizing the dimension of the junction and the positions/radii of the posts. The design results are verified by an em-simulator (Ansoft HFSS) and experiments.
This paper presents an automated design of linear and non-linear differential analog circuits accelerated by reuse of genetic operations. The system first synthesizes circuits using pairs of simplified MOSFET model. During the evolutionary process, genetic operations that improve circuit characteristics are stored in a database and reused to effectively obtain a better circuit. Simplified elements in a generated circuit are replaced by MOSFETs and optimization of the transistor size is performed using an optimizer available in market if necessary. The capability of this method is demonstrated through experiments of synthesis of a differential voltage amplifier, a circuit having cube-law characteristic in differential mode and square-law characteristic in common-mode, and a dB-linear VGA (Variable Gain Amplifier). The results show the reuse of genetic operations accelerates the synthesis and success rate becomes 100%.
This paper presents an automated design of analog circuits starting with idealized elements. Our system first synthesizes circuits using idealized elements by a genetic algorithm (GA). GA evolves circuit topologies and transconductances of idealized elements to achieve the given specifications. The use of idealized elements effectively reduces search space and make the synthesis efficient. Second, idealized elements in a generated circuit are replaced by MOSFETs. Through the two processes, a circuit satisfying the given specifications can be obtained. The capability of this method was demonstrated through experiments of synthesis of a trans-impedance amplifier and a cubing circuit and benchmark tests. The results of the benchmark tests show the proposed CAD is more than 10 times faster than the CAD which does not use idealized elements.
Mitsuyoshi KISHIHARA Isao OHTA Kuniyoshi YAMANE
This paper presents a design method of multi-stage, multi-way microstrip power dividers with the aim of constructing a compact low-loss power divider with numbers of outputs. First, an integration design technique of power dividers composed of multi-step, multi-furcation and mitered bends is described. Since the analytical technique is founded on the planar circuit approach combined with the segmentation method, the optimization of the circuit patterns can be performed in a reasonable short computation time. Next, the present method is applied to the design of broadband Nn-way power dividers such as 32-way power divider consisting of 3-way dividers in two-stage structures, respectively. In addition, a 12-way power divider constructed from a series connection of a 3-way and three 4-way dividers is designed. The dividers equivalently contain a 3-section Chebyshev transformer to realize broadband properties. As a result, the fractional bandwidths of nearly 85% and 66.7% for the power-split imbalance less than 0.2 dB and the return loss better than -20 dB are obtained for the 9- and 12-way power dividers, respectively. The validity of these design results is confirmed by a commercial em-simulator (Ansoft HFSS) and experiments.
Mitsuyoshi KISHIHARA Kuniyoshi YAMANE Isao OHTA Tadashi KAWAI
This paper treats multi-way microstrip power dividers composed of multi-step, multi-furcation, and corners. Since the design procedure is founded on the planar circuit approach in combination with the segmentation method, optimization of the circuit configuration can be performed in a reasonable short computation time when applying the Powell's optimization algorithm. Actually, broadband 3- and 4-way power dividers with mitered bends are designed, and fractional bandwidths of about 90% and 100% are realized for the power-split imbalance less than 0.2 dB and the return loss better than -20 dB, respectively. The validity of the design results is confirmed by an EM-simulator (HFSS) and experiments.
Takuya OKAMOTO Takafumi YUASA Tomonori IZUMI Takao ONOYE Yukihiro NAKAMURA
A configurable device "PCA-Chip2" implements the concept of Plastic Cell Architecture, which is an extension of programmable logic devices. This paper presents basic design tools for the PCA-Chip2 as the first step to develop the total design environment. Given a C description of a target function, configuration data for PCA-Chip2 is automatically generated by the tools. Trial designs by the tools are also presented to demonstrate the practicability of the proposed approach.
Hajime SHIBATA Soji MORI Nobuo FUJII
An automated synthesis for analog computational circuits in transistor-level configuration is presented. A cell-based structure is introduced to place moderate constraints on the MOSFET circuit topology. Even though each cell has a simple structure that consists of one current path with four transistors, common analog building blocks can be implemented using combinations of the cells. A genetic algorithm is applied to search circuit topologies and transistor sizes that satisfy given specifications. Synthesis capabilities are demonstrated through examples of three types of computational circuits; absolute value, squaring, and cubing functions by using computer simulations and real hardware.
An automated analog circuit synthesis based on reuse of topological features of 'prototype circuits' is proposed. The prototype circuits are designed by humans and suggested to the synthesis system as hints of configurations of new analog circuits to be synthesized by the system. The connections of elements in analog circuits are not generally systematic, but they would have some similarities to a circuit which has similar behaviors or functionalities. In the proposed process, the information on circuit connections is stored as sub-circuits extracted from the prototype circuits. And then, genetic algorithm is used to search for an optimum combination of the sub-circuits that achieves the desired electronic specifications. The combinations of sub-circuits are performed with a novel technique where the terminals of the sub-circuits are shared. The capabilities of the proposed method are demonstrated through an example of the synthesis.
This paper presents an automatic synthesis method of active analog circuits that uses evolutionary search and employs some topological features of analog integrated circuits. Our system firstly generates a set of circuits at random, and then evolves their topologies and device sizing to fit an environment which is formed by the fitness function translated from the electrical specifications of the circuit. Therefore expert knowledge about circuit topologies and sizing are not needed. The capability of this method is demonstrated through experiments of automatic synthesis of CMOS operational amplifiers.
We give a tutorial on high-level synthesis of VLSI. The evolution of digital system synthesis techniques and the need for higher level design automation tools are first discussed. We then point out essential issues to the successful development and acceptance by the designers of a high-level synthesis system. Techniques that have been proposed for various subtasks of high-level synthesis are surveyed. Possible applications of the high level synthesis in area other than chip design are forecast. Finally, we point out several directions for possible future research.
Jun SATO Alauddin Y. ALOMARY Yoshimichi HONMA Takeharu NAKATA Akichika SHIOMI Nobuyuki HIKICHI Masaharu IMAI
This paper describes the current implementation and experimental results of a hardware/software codesign system for ASIP (Application Specific Integrated Processor) development: the PEAS-I System. The PEAS-I system accepts a set of application programs written in C language, associated data set, module database, and design constraints such as chip area and power consumption. The system then generates an optimized CPU core design in the form of an HDL as well as a set of application program development tools such as a C compiler, an assembler and a simulator. Another important feature of the PEAS-I system is that the system is able to give accurate estimations of chip area and performance before the detailed design of the ASIP is completed. According to the experimental results, the PEAS-I system has been found to be highly effective and efficient for ASIP development.