1-3hit |
Masayuki ARAI Tatsuro ENDO Kazuhiko IWASAKI Michinobu NAKAO Iwao SUZUKI
To reduce the manufacturing cost of SoCs with many embedded SRAMs, we propose a scheme to reduce the area per good die for the SoC memory built-in self-test (MBIST). We first propose BIST hardware overhead reduction by application of an encoder-based comparator. For the repair of a faulty SRAM module with 2-D redundancy, we propose spare assignement algorithm. Based on an existing range-cheking-first algorithm (RCFA), we propose assign-all-row-RCFA (A-RCFA) which assign unused spare rows to faulty ones, in order to suppress the degradation of repair rate due to compressed fail location information output from the encoder-based comparator. Then, considering that an SoC has many SRAM modules, we propose a heuristic algorithm based on iterative improvement algorithm (IIA), which determines whether each SRAM should have a spare row or not, in order to minimize area per a good die. Experimental results on practical scale benchmark SoCs with more than 1,000 SRAM modules indicate that encoder-based comparators reduce hardware overhead by about 50% compared to traditional ones, and that combining the IIA-based algorithm for determining redundancy architecture with the encoder-based comparator effectively reduces the area per good die.
Yasumasa TSUKAMOTO Tatsuya KUNIKIYO Koji NII Hiroshi MAKINO Shuhei IWADE Kiyoshi ISHIKAWA Yasuo INOUE Norihiko KOTANI
It is still an open problem to elucidate the scaling merits of an embedded SRAM with Low Operating Power (LOP) MOSFETs fabricated in 50, 70 and 100 nm CMOS technology nodes. Taking into account a realistic SRAM cell layout, we evaluated the parasitic capacitance of the bit line (BL) as well as the word line (WL) in each generation. By means of a 3-Dimensional (3D) interconnect simulator (Raphael), we focused on the scaling merit through a comparison of the simulated SRAM BL delay for each CMOS technology node. In this paper, we propose two kinds of original interconnect structure which modify ITRS (International Technology Roadmap for Semiconductors), and make it clear that the original interconnect structures with reduced gate overlap capacitance guarantee the scaling merits of SRAM cells fabricated with LOP MOSFETs in 50 and 70 nm CMOS technology nodes.
The local wiring structure which is known as a technique for reducing junction capacitance due to the area reduction of the Source/Drain junction by the "on-field" contact scheme was constructed. Its effect on speed/power improvement was evaluated with a ring oscillator. A speed improvement of 15% and a 17% reduction in power dissipation was obtained as compared with conventional non-local wiring structures. This technique was applied to a practical device application, that is, a 0.35 µm embedded dual port SRAM used as a buffer memory in an asynchronous transfer mode switch (ATM-SW) LSI. In order to suppress the coupling noise between the write and read bitlines with the small cell realized by the local wiring scheme, a new divided layer 'bitline architecture was developed. As a result, reduction of SRAM macro size of 31% was attained by also applying the local wiring scheme to peripheral circuits, such as decoder, sense amplifier, and driver. A detailed analysis on this embedded dual port SRAM revealed a 15.2% reduction of write port power at 3.3 V. It is also shown that the local wiring technique is more effective with low power supply voltages to allow for further power reduction.