1-6hit |
Akira YAMADA Yasuhiro NUNOMURA Hiroaki SUZUKI Hisakazu SATO Niichi ITOH Tetsuya KAGEMOTO Hironobu ITO Takashi KURAFUJI Nobuharu YOSHIOKA Jingo NAKANISHI Hiromi NOTANI Rei AKIYAMA Atsushi IWABU Tadao YAMANAKA Hidehiro TAKATA Takeshi SHIBAGAKI Takahiko ARAKAWA Hiroshi MAKINO Osamu TOMISAWA Shuhei IWADE
A high-speed 32-bit RISC microcontroller has been developed. In order to realize high-speed operation with minimum hardware resource, we have developed new design and analysis methods such as a clock distribution, a bus-line layout, and an IR drop analysis. As a result, high-speed operation of 400 MHz has been achieved with power dissipation of 0.96 W at 1.8 V.
Hiromi NOTANI Masayuki KOYAMA Ryuji MANO Hiroshi MAKINO Yoshio MATSUDA Osamu TOMISAWA Shuhei IWADE
A 64-bit 100-MHz multimedia DSP core has been designed using 0.15-µ m CMOS technology. An improved Auto-Backgate-Controlled MT-CMOS (ABC-MT-CMOS) circuit with a charge pump is adopted to suppress the standby leakage current. The dynamic active current of whole chip was simulated to optimize the size of a switch for a power supply control. The DSP core chip, which integrates 300-kgate Logic, 64-kbyte SRAM and charge pump circuit, has 8-µ A standby leakage current. The reduction rate is 1/250.
Yasumasa TSUKAMOTO Tatsuya KUNIKIYO Koji NII Hiroshi MAKINO Shuhei IWADE Kiyoshi ISHIKAWA Yasuo INOUE Norihiko KOTANI
It is still an open problem to elucidate the scaling merits of an embedded SRAM with Low Operating Power (LOP) MOSFETs fabricated in 50, 70 and 100 nm CMOS technology nodes. Taking into account a realistic SRAM cell layout, we evaluated the parasitic capacitance of the bit line (BL) as well as the word line (WL) in each generation. By means of a 3-Dimensional (3D) interconnect simulator (Raphael), we focused on the scaling merit through a comparison of the simulated SRAM BL delay for each CMOS technology node. In this paper, we propose two kinds of original interconnect structure which modify ITRS (International Technology Roadmap for Semiconductors), and make it clear that the original interconnect structures with reduced gate overlap capacitance guarantee the scaling merits of SRAM cells fabricated with LOP MOSFETs in 50 and 70 nm CMOS technology nodes.
Takahiro SHIMADA Hiromi NOTANI Yasunobu NAKASE Hiroshi MAKINO Shuhei IWADE
We proposed a push-pull output buffer that maintains the data transmission rate for lower supply voltages. It operates at an internal supply voltage (VDD) of 0.7-1.6 V and an interface supply voltage (VDDX) of 1.0-3.6 V. In low VDDX operation, the output buffer utilizes parasitic bipolar transistors instead of MOS transistors to maintain drivability. Furthermore forward body bias (FBB) control is provided for the level converter in low VDD operation. We fabricated a test chip with a standard 0.15 µm CMOS process. Measurement results indicate that the proposed output buffer achieves 200 Mbps operation at VDD of 0.7 V and VDDX of 1.0 V.
Hisakazu SATO Yasuhiro NUNOMURA Niichi ITOH Koji NII Kanako YOSHIDA Hironobu ITO Jingo NAKANISHI Hidehiro TAKATA Yasunobu NAKASE Hiroshi MAKINO Akira YAMADA Takahiko ARAKAWA Toru SHIMIZU Yuichi HIRANO Takashi IPPOSHI Shuhei IWADE
A low-power microcontroller has been developed with 0.10 µm bulk compatible body-tied SOI technology. For this work, only two new masks are required. For the other layers, existing masks of a prior work developed with 0.18 µm bulk CMOS technology can be applied without any changes. With the SOI technology, the high-speed operation of over 600 MHz has been achieved at a supply voltage of 1.2 V, which is 1.5 times faster than prior work. Also, a five times improvement in the power-delay product has been achieved at a supply voltage 0.8 V. Moreover, the compatibility of the SOI technology with bulk CMOS has been verified, because all circuit blocks of the chip, including logic, memory, analog circuit, and PLL, are completely functional, even though only two new masks are used.
Takashi KURAFUJI Yasunobu NAKASE Hidehiro TAKATA Yukinaga IMAMURA Rei AKIYAMA Tadao YAMANAKA Atsushi IWABU Shutarou YASUDA Toshitsugu MIWA Yasuhiro NUNOMURA Niichi ITOH Tetsuya KAGEMOTO Nobuharu YOSHIOKA Takeshi SHIBAGAKI Hiroyuki KONDO Masayuki KOYAMA Takahiko ARAKAWA Shuhei IWADE
We apply a selective-sets resizable cache and a complete hierarchy SRAM for the high-performance and low-power RISC CPU core. The selective-sets resizable cache can change the cache memory size by varying the number of cache sets. It reduces the leakage current by 23% with slight degradation of the worst case operating speed from 213 MHz to 210 MHz. The complete hierarchy SRAM enables the partial swing operation not only in the bit lines, but also in the global signal lines. It reduces the current consumption of the memory by 4.6%, and attains the high-speed access of 1.4 ns in the typical case.