Keyword Search Result

[Keyword] equalization(218hit)

101-120hit(218hit)

  • An Iterative Cyclic Prefix Reconstruction Technique for Multi-Antenna Single-Carrier Transmission Systems over Multipath Wireless Channels

    Min-Sung KIM  Jong-Bu LIM  Gi-Hong IM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:11
      Page(s):
    3208-3215

    In this paper, an efficient cyclic prefix reconstruction (CPR) technique with turbo equalization is developed for multi-antenna single-carrier frequency-domain equalization (SC-FDE) systems, which are for multi-input multi-output (MIMO), space-time block code (STBC), and space-frequency block code (SFBC) applications. The proposed method includes pre-processing estimation (PPE), weighted interblock interference cancellation (WIBIC), or residual intercarrier interference suppression (RICIS). PPE is employed to compute initial values of MIMO turbo equalization and the WIBIC is developed to cancel interblock interference (IBI) at the initial iteration of the CPR for STBC SC-FDE. RICIS is used to mitigate residual intercarrier interference (ICI) after each iteration of the CPR. By applying the proposed method to the multi-antenna SC-FDE system with insufficient cyclic prefix (CP), we can significantly improve its error performance, obtaining the benefits of spectral efficiency gain and multiplexing/diversity gain in MIMO/STBC/SFBC.

  • Pre- and Post-Equalization and Frequency Diversity Combining Methods for Block Transmission with Cyclic Prefix

    Yuki YOSHIDA  Kazunori HAYASHI  Hideaki SAKAI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:10
      Page(s):
    2874-2883

    This paper proposes low-complexity pre- and post-frequency domain equalization and frequency diversity combining methods for block transmission schemes with cyclic prefix. In the proposed methods, the equalization and diversity combining are performed simultaneously in discrete frequency domain. The weights for the proposed equalizer and combiner are derived based on zero-forcing and minimum-mean-square error criteria. We demonstrate the performance of the proposed methods, including bit-error rate performance and peak-to-average power ratios of the transmitted signal, via computer simulations.

  • Iterative Cyclic Prefix Reconstruction for Precoded SC-FDE

    Taewon HWANG  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E90-B No:9
      Page(s):
    2447-2455

    A cyclic prefix reconstruction scheme is proposed for precoded single-carrier systems with frequency-domain equalization (SC-FDE) that employ insufficient length of cyclic prefix. For SC-FDE, cyclic prefix is employed to facilitate frequency-domain equalization at the receiver. Since inserting cyclic prefix incurs a loss in bandwidth-utilization efficiency, it is desirable to limit the length of cyclic prefix for SC-FDE. This paper designs the energy spreading transform (EST), a precoder that enables iterative reconstruction of missing cyclic prefix. The performance of the proposed scheme is shown to be close to that of SC-FDE with enough length of cyclic prefix.

  • Adaptive Decision Feedback Channel Estimation with Periodic Phase Correction for Frequency-Domain Equalization in DS-CDMA Mobile Radios

    Le LIU  Fumiyuki ADACHI  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E90-B No:8
      Page(s):
    1997-2005

    Recently, the decision feedback channel estimation based on the minimum mean square error criterion (DF-MMSE-CE) using a fixed DF filter coefficient has been proposed to improve the channel estimation accuracy for DS-CDMA with frequency-domain equalization (FDE). In this paper, we propose adaptive DF (ADF)-MMSE-CE, in which the DF filter coefficient is adapted to changing channel conditions based on a recursive least square (RLS) algorithm. Furthermore, the channel estimate is phase corrected upon the reception of the periodically inserted pilot chip blocks. The average BER performance of DS-CDMA with MMSE-FDE using ADF-MMSE-CE is evaluated by computer simulation in a frequency-selective Rayleigh fading channel and the simulation results show that our proposed scheme is very robust against fast fading.

  • Performance Evaluation of PRML System Based on Thermal Decay Model

    Nobuhiko SHINOHARA  Keiko TAKEUCHI  Hisashi OSAWA  Yoshihiro OKAMOTO  Yasuaki NAKAMURA  Atsushi NAKAMOTO  Kenji MIURA  Hiroaki MURAOKA  Yoshihisa NAKAMURA  

     
    PAPER

      Vol:
    E90-C No:8
      Page(s):
    1583-1588

    The long-term bit error rate (BER) performance of partial response maximum likelihood (PRML) system using an adaptive equalizer in a perpendicular magnetic recording (PMR) channel with thermal decay is studied. A thermal decay model based on the experimental data giving the amplitude change of reproducing waveforms with the elapsed time for CoPtCr-SiO2 PMR medium is obtained. The BER performance of PR1ML channel for the 16/17(0,6/6) run-length-limited (RLL) code is evaluated by computer simulation using the model. The relationship between the ratio RJ of the jitter-like media noise power to the total noise power at the reading point and the required SNR to achieve a BER of 10-4 is also obtained and the performance is compared with that of the conventional equalization. The results show that the significant improvement in SNR by utilizing the adaptive equalization is recognized over all RJ compared with the conventional equalization.

  • A Recursive Data Least Square Algorithm and Its Channel Equalization Application

    Jun-Seok LIM  Jea-Soo KIM  Koeng-Mo SUNG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E90-B No:8
      Page(s):
    2143-2146

    Using the recursive generalized eigendecomposition method, we develop a recursive form solution to the data least squares (DLS) problem in which the error is assumed to lie in the data matrix only. We apply it to a linear channel equalizer. Simulations shows that the DLS-based equalizer outperforms the ordinary least squares-based one in a channel equalization problem.

  • Analysis of Iterative ICI Cancellation Algorithm for Uplink OFDMA Systems with Carrier-Frequency Offset

    Min HUANG  Xiang CHEN  Shidong ZHOU  Jing WANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1734-1745

    In orthogonal frequency-division multiplex access (OFDMA) uplink, the carrier-frequency offsets (CFOs) between the multiple transmitters and the receiver introduce inter-carrier interference (ICI) and severely degrade the performance. In this paper, based on the perfect estimation of each user's CFO, we propose two low-complexity iterative algorithms to cancel ICI due to CFOs, which are denoted as the basic algorithm and the improved algorithm with decision-feedback equalization (DFE), respectively. For the basic one, two theorems are proposed that yield a sufficient condition for the convergence of iterations. Moreover, the interference-power-evolution (IPE) charts are proposed to evaluate the convergence behavior of this interference cancellation algorithm. Motivated by the IPE chart, the procedure of DFE is introduced into the iterations, which is the basic idea of the improved algorithm. For this improved algorithm, the error-propagation effect are analyzed and suppressed by an efficient stopping criterion. From IPE charts and simulation results, it can be easily observed that the basic algorithm has the same capability of ICI cancellation as the linear optimal minimum mean square error (MMSE) method, but offers lower complexity, while the improved algorithm with DFE outperforms the MMSE method in terms of the bit-error rate (BER) performance.

  • Frequency-Domain MMSE Channel Estimation for Frequency-Domain Equalization of DS-CDMA Signals

    Kazuaki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1746-1753

    Frequency-domain equalization (FDE) based on minimum mean square error (MMSE) criterion can replace the conventional rake combining to significantly improve the bit error rate (BER) performance in a frequency-selective fading channel. MMSE-FDE requires an accurate estimate of the channel transfer function and the signal-to-noise power ratio (SNR). Direct application of pilot-assisted channel estimation (CE) degrades the BER performance, since the frequency spectrum of the pilot chip sequence is not constant over the spreading bandwidth. In this paper, we propose a pilot-assisted decision feedback frequency-domain MMSE-CE. The BER performance with the proposed pilot-assisted MMSE-CE in a frequency-selective Rayleigh fading channel is evaluated by computer simulation. It is shown that MMSE-CE always gives a good BER performance irrespective of the choice of the pilot chip sequence and shows a high tracking ability against fading. For a spreading factor SF of 16, the Eb/N0 degradation for BER=10-4 with MMSE-CE from the ideal CE case is as small as 0.9 dB (including an Eb/N0 loss of 0.28 dB due to the pilot insertion).

  • Improved Turbo Equalization Schemes Robust to SNR Estimation Errors

    Qiang LI  Wai Ho MOW  Zhongpei ZHANG  Shaoqian LI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:6
      Page(s):
    1454-1459

    An improved Max-Log-Map (MLM) turbo equalization algorithm called Scaled Max-Log-Map (SMLM) iterative equalization is presented. Simulations show that the scheme can dramatically outperform the MLM besides it is insensitive to SNR mismatch. Unfortunately, its performance is still much worse than that of Log-Map (LM) with exact SNR over high-loss channels. Accordingly, we also propose a new SNR estimation algorithm based on the reliability values of soft output extrinsic information of SMLM decoder. Using the new scheme, we obtain good performance close to that of LM with ideal knowledge of SNR.

  • Periodic Spectrum Transmission for Single-Carrier Transmission Frequency-Domain Equalization

    Fumiaki MAEHARA  Satoshi GOTO  Fumio TAKAHATA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:6
      Page(s):
    1407-1414

    This paper proposes a frequency diversity scheme using only even-numbered samples for single-carrier transmission with frequency-domain equalization (SC-FDE). In the proposed scheme, a periodical frequency spectrum generated by using only even-numbered samples in the time domain provides the frequency redundancy, which is utilized for frequency diversity. Moreover, in order to avoid the data rate reduction due to the decrease in the samples within one block, the high-level modulation is applied to each sample and the transmitting power of each sample can be doubled for the equivalent power transmission instead. Computer simulation results show that the proposed scheme provides a steeper BER curve than the typical SC-FDE over frequency selective fading channels, while the typical SC-FDE is more favorable than the proposed scheme over flat fading channels. Moreover, the proposed scheme still retains its characteristic even when channel estimation and channel coding are additionally taken into account.

  • A Weighted Element-Wise Block Adaptive Frequency-Domain Equalization

    Jongseob BAEK  Jongsoo SEO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:5
      Page(s):
    1257-1260

    In this paper, a weighted element-wise block adaptive frequency-domain equalization (WEB-FDE) is proposed for a single-carrier system with the cyclic-prefix. In the WEB-FDE, the one-tap equalizer corresponding to a frequency-bin first preserves input DFT elements (element-wise block). Its coefficient in each block is then calculated by minimizing a weighted squared norm of the a posteriori error. Simulation results in a time-varying typical urban (TU) channel show that the bit-error-rate (BER) performance of the WEB-FDE outperform that of the normalized least-mean-square (NLMS)-FDE and recursive-least-square (RLS)-FDE.

  • Iterative Channel Estimation for Frequency-Domain Equalization of DSSS Signals

    Koichi ISHIHARA  Kazuaki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:5
      Page(s):
    1171-1180

    As the channel frequency selectivity becomes severer, the bit error rate (BER) performance of direct sequence spread spectrum (DSSS) signal transmission with rake combining degrades due to an increasing inter-path interference (IPI). Frequency-domain equalization (FDE) can replace rake combining with much improved BER performance in a severe frequency-selective fading channel. For FDE, accurate estimation of the channel transfer function is required. In this paper, we propose an iterative channel estimation that uses pilot chips which are time-multiplexed within each chip block for fast Fourier transform (FFT). The pilot acts as a cyclic-prefix of FFT block as well. The achievable BER performance is evaluated by computer simulation. It is shown that the proposed channel estimation has a very good tracking ability against fast fading.

  • Frequency-Domain Multi-Stage Soft Interference Cancellation for DS-CDMA Uplink Signal Transmission

    Koichi ISHIHARA  Kazuaki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:5
      Page(s):
    1152-1161

    It is well-known that, in DS-CDMA downlink signal transmission, frequency-domain equalization (FDE) based on minimum mean square error (MMSE) criterion can replace rake combining to achieve much improved bit error rate (BER) performance in severe frequency-selective fading channel. However, in uplink signal transmission, as each user's signal goes through a different channel, a severe multi-user interference (MUI) is produced and the uplink BER performance severely degrades compared to the downlink. When a small spreading factor is used, the uplink BER performance further degrades due to inter-chip interference (ICI). In this paper, we propose a frequency-domain multi-stage soft interference cancellation scheme for the DS-CDMA uplink and the achievable BER performance is evaluated by computer simulation. The BER performance comparison of the proposed cancellation technique and the multi-user detection (MUD) is also presented.

  • Frequency-Domain Space-Time Block Coded-Joint Transmit/Receive Diversity for Direct-Sequence Spread Spectrum Signal Transmission

    Hiromichi TOMEBA  Kazuaki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:3
      Page(s):
    597-606

    Recently, we proposed space-time block coded-joint transmit/receive antenna diversity (STBC-JTRD) for narrow band transmission in a frequency-nonselective fading channel; it allows an arbitrary number of transmit antennas while limiting the number of receive antennas to 4. In this paper, we extend STBC-JTRD to the case of frequency-selective fading channels and propose frequency-domain STBC-JTRD for broadband direct sequence-spread spectrum (DSSS) signal transmission. A conditional bit error rate (BER) analysis is presented. The average BER performance in a frequency-selective Rayleigh fading is evaluated by Monte-Carlo numerical computation method using the derived conditional BER and is confirmed by computer simulation of the signal transmission. Performance comparison between frequency-domain STBC-JTRD transmission and joint space-time transmit diversity (STTD) and frequency-domain equalization (FDE) reception is also presented.

  • Space-Time Cyclic Delay Transmit Diversity for a Multi-Code DS-CDMA Signal with Frequency-Domain Equalization

    Ryoko KAWAUCHI  Kazuaki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:3
      Page(s):
    591-596

    Frequency-domain equalization (FDE) can take advantage of the frequency-selectivity of the channel to improve the transmission performance in a frequency selective fading channel. To further improve the transmission performance, the transmit diversity technique can be used. Cyclic delay transmit diversity (CDTD) can strengthen the frequency-selectivity while space-time transmit diversity (STTD) can achieve the antenna diversity gain. In this paper, we propose a 4-antenna space-time cyclic delay transmit diversity (STCDTD), which is a combination of 2-antenna STTD and 2-antenna CDTD schemes, for orthogonal multi-code direct sequence code division multiple access (DS-CDMA) using FDE. We evaluate the BER performance and the throughput performance by computer simulation and compare them with the original CDTD and STTD schemes.

  • Blind Equalization with Generalized Inverse Channel Estimation and Fractional Phase MLSE Metrics for Mobile Communications

    Issei KANNO  Hiroshi SUZUKI  Kazuhiko FUKAWA  

     
    PAPER-Communications

      Vol:
    E90-A No:3
      Page(s):
    553-561

    This paper proposes a new blind adaptive MLSE equalizer for frequency selective mobile radio channels. The proposed equalizer performs channel estimation for each survivor path of the Viterbi algorithm (VA), and restricts the number of symbol candidates for the channel estimation in order to reduce prohibitive complexity. In such channel estimation, autocorrelation matrices of the symbol candidates are likely to become singular, which increases the estimation error. To cope with the singularity, the proposed equalizer employs a recursive channel estimation algorithm using the Moore-Penrose generalized inverse of the autocorrelation matrix. As another problem, the blind channel estimation can yield plural optimal estimates of a channel impulse response, and the ambiguity of the estimates degrades the BER performance. To avoid this ambiguity, the proposed equalizer is enhanced so that it can take advantage of the fractional sampling. The enhanced equalizer performs symbol-spaced channel estimation for each fractional sampling phase. This equalizer combines separate channel estimation errors, and provides the sum to the VA processor as the branch metric, which tremendously reduces the probability that a correct estimate turns into a false one. Computer simulation demonstrates the effectiveness of the proposed equalizers in the frequency selective fading channels.

  • Performance Analysis of a Non-Uniform DMT Transceiver in Digital Subscriber Line

    Sobia BAIG  Muhammad Junaid MUGHAL  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E90-B No:1
      Page(s):
    140-143

    A Non-Uniform Discrete Multitone (DMT) transceiver employing an octave spaced quadrature mirror filter (QMF) bank, can be used to overcome the problem of channel noise enhancement in the zero-forcing (ZF) equalization technique. In this letter, performance of the Non-Uniform DMT system is analyzed. A study of the crosstalk between sub-channels due to non-ideal filter banks is also presented. Crosstalk analysis is based upon the bit error rate (BER) performance versus the QMF order in a standadard ADSL channel. Performance comparison of the Non-Uniform DMT transceiver and a conventional DMT system is given, and it is shown that the Non-Uniform DMT transceiver displays slight improvement over the conventional DMT system for the filters of higher order.

  • Frequency-Domain ICI Cancellation with MMSE Equalization for DS-CDMA Downlink

    Kazuaki TAKEDA  Koichi ISHIHARA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:12
      Page(s):
    3335-3343

    Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can replace the conventional rake combining while offering significantly improved bit error rate (BER) performance for the downlink DS-CDMA in a frequency-selective fading channel. However, the presence of residual inter-chip-inference (ICI) after FDE produces orthogonality distortion among the spreading codes and the BER performance degrades as the level of multiplexing increases. In this paper, we propose a joint MMSE frequency-domain equalization (FDE) and ICI cancellation to improve the BER performance of the DS-CDMA downlink. In the proposed scheme, the residual ICI replica in the frequency-domain is generated and subtracted from each frequency component of the received signal after MMSE-FDE. The MMSE weight at each iteration is derived taking into account the residual ICI. The effect of the proposed ICI cancellation scheme is confirmed by computer simulation.

  • Novel Blind Adaptive Equalization over Doubly-Selective Fading Channels

    Mi-Kyung OH  Yeong-Hyeon KWON  Dong-Jo PARK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:12
      Page(s):
    3463-3466

    A new receiver structure that combines the constant modulus algorithm (CMA) and the Kalman filter (KF) is investigated to exploit the advantages of both algorithms; simple implementation of blind algorithms, and excellent tracking ability, respectively. The proposed scheme achieves faster convergence and adaptability to the channel variation, which is verified through comparative simulations in doubly-selective (time- and frequency-selective) fading channels.

  • Iterative Frequency-Domain Soft Interference Cancellation for Multicode DS- and MC-CDMA Transmissions and Performance Comparison

    Koichi ISHIHARA  Kazuaki TAKEDA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:12
      Page(s):
    3344-3355

    Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can significantly improve the BER performance of DS- and MC-CDMA systems in a severe frequency-selective fading channel. However, since the frequency-distorted signal cannot be completely equalized, the residual inter-code interference (ICI) limits the BER performance improvement. 4G systems must support much higher variable rate data services. Orthogonal multicode transmission technique has flexibility in offering variable rate services. However, the BER performance degrades as the number of parallel codes increases. In this paper, we propose an iterative frequency-domain soft interference cancellation (IFDSIC) scheme for multicode DS- and MC-CDMA systems and their achievable BER performances are evaluated by computer simulation.

101-120hit(218hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.