Keyword Search Result

[Keyword] forward body bias(5hit)

1-5hit
  • A 1-V TSPC Dual Modulus Prescaler with Speed Scalability Using Forward Body Biasing in 0.18 µm CMOS

    Hyunchol SHIN  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E95-C No:6
      Page(s):
    1121-1124

    The operating speed scalability is demonstrated by using the forward body biasing method for a 1-V 0.18-µm CMOS true single-phase clocking (TSPC) dual-modulus prescaler. With the forward body bias voltage varying between 0 and 0.4 V, the maximum operating speed changes by about 40–50% and the maximum input sensitivity frequency changes by about 400%. This speed scalability is achieved with less than 0.5-dB phase noise degradation. This demonstration indicates that the forward body biasing method is instrumental to build a cost-saving power-efficient 1-V 0.18-µm CMOS radio for low-power WBAN and WSN applications.

  • Low-Voltage Wireless Analog CMOS Circuits toward 0.5 V Operation

    Toshimasa MATSUOKA  Jun WANG  Takao KIHARA  Hyunju HAM  Kenji TANIGUCHI  

     
    INVITED PAPER

      Vol:
    E93-A No:2
      Page(s):
    356-366

    This paper introduces several techniques for achieving RF and analog CMOS circuits for wireless communication systems under ultra-low-voltage supply, such as 0.5 V. Forward body biasing and inverter-based circuit techniques were applied in the design of a feedforward Δ-ΣA/D modulator operating with a 0.5 V supply. Transformer utilization is also presented as an inductor area reduction technique. In addition, application of stochastic resonance to A/D conversion is discussed as a future technology.

  • Design of a 0.5 V Op-Amp Based on CMOS Inverter Using Floating Voltage Sources

    Jun WANG  Tuck-Yang LEE  Dong-Gyou KIM  Toshimasa MATSUOKA  Kenji TANIGUCHI  

     
    LETTER-Electronic Circuits

      Vol:
    E91-C No:8
      Page(s):
    1375-1378

    This letter presents a 0.5 V low-voltage op-amp in a standard 0.18 µm CMOS process for switched-capacitor circuits. Unlike other two-stage 0.5 V op-amp architectures, this op-amp consists of CMOS inverters that utilize floating voltage sources and forward body bias for obtaining high-speed operation. And two improved common-mode rejection circuits are well combined to achieve low power and chip area reduction. Simulation results indicate that the op-amp has an open-loop gain of 62 dB, and a high unity gain bandwidth of 56 MHz. The power consumption is only 350 µW.

  • Substrate-Noise and Random-Variability Reduction with Self-Adjusted Forward Body Bias

    Yoshihide KOMATSU  Koichiro ISHIBASHI  Makoto NAGATA  

     
    PAPER-Digital

      Vol:
    E90-C No:4
      Page(s):
    692-698

    This paper describes a method of reducing substrate noise and random variability utilizing a self-adjusted forward body bias (SA-FBB) circuit. To achieve this, we designed a test chip (130 nm CMOS 3-well) that contained an on-chip oscilloscope for detecting dynamic noise from various frequency noise sources, and another test chip (90 nm CMOS 2-well) that contained 10-M transistors for measuring random variability tendencies. Under SA-FBB conditions, it reduced noise by 35.3-69.8% and reduced random variability σ (Ids) by 23.2-57.9%.

  • Soft Error Hardened Latch Scheme with Forward Body Bias in a 90-nm Technology and Beyond

    Yoshihide KOMATSU  Yukio ARIMA  Koichiro ISHIBASHI  

     
    PAPER-Soft Error

      Vol:
    E89-C No:3
      Page(s):
    384-391

    This paper describes a soft error hardened latch (SEH-Latch) scheme that has an error correction function in the fine process. The storage node of the latch is separated into three electrodes and a soft error on one node is collected by the other two nodes despite the large amount and long-lasting influx of radiation-induced charges. To achieve this, we designed two types of SEH-Latch circuits and a standard latch circuit using 130-nm 2-well, 3-well, and also 90-nm 2-well CMOS processes. The proposed circuit demonstrated immunity that was two orders higher through an irradiation test using alpha-particles, and immunity that was one order higher through neutron irradiation. We also demonstrated forward body bias control, which improves alpha-ray immunity by 26% for a standard latch and achieves 44 times improvement in the proposed latch.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.