This paper shows the design of multi-stage fuzzy inference system with smaller number of rules based upon the optimization of rules by using the genetic algorithm. Since the number of rules of fuzzy inference system increases exponentially in proportion to the number of input variables powered by the number of membership function, it is preferred to divide the inference system into several stages (multi-stage fuzzy inference system) and decrease the number of rules compared to the single stage system. In each stage of inference only a portion of input variables are used as the input, and the output of the stage is treated as an input to the next stage. If we use the simplified inference scheme and assume the shape of membership function is given, the same backpropagation algorithm is available to optimize the weight of each rule as is usually used in the single stage inference system. On the other hand, the shape of the membership function is optimized by using the GA (genetic algorithm) where the characteristics of the membership function is represented as a set of string to which the crossover and mutation operation is applied. By combining the backpropagation algorithm and the GA, we have a comprehensive optimization scheme of learning for the multi-stage fuzzy inference system. The inference system is applied to the automatic bond rating based upon the financial ratios obtained from the financial statement by using the prescribed evaluation of rating published by the rating institution. As a result, we have similar performance of the multi-stage fuzzy inference system as the single stage system with remarkably smaller number of rules.
In this paper, a new scheme for designing multilevel BTC coding is proposed. Optimal quantization can be obtained by selecting the quantization threshold with an exhaustive search. However, this requires an enormous amount of computation and is, thus impractical when we consider an exhaustive search for the multilevel BTC. In order to find a better threshold so that the average mean square error between the original and reconstructed images is a minimum, the genetic algorithm is applied. Comparison of the results of the proposed method with the exhaustive search reveal that the former method can almost achieve optimal quantization with much less computation than that required in the latter case.
Jeng-Shyang PAN Jing-Wein WANG
In this paper, a new feature which is characterized by the extrema density of 2-D wavelet frames estimated at the output of the corresponding filter bank is proposed for texture segmentation. With and without feature selection, the discrimination ability of features based on pyramidal and tree-structured decompositions are comparatively studied using the extrema density, energy, and entropy as features, respectively. These comparisons are demonstrated with separable and non-separable wavelets. With the three-, four-, and five-category textured images from Brodatz album, it is observed that most performances with feature selection improve significantly than those without feature selection. In addition, the experimental results show that the extrema density-based measure performs best among the three types of features investigated. A Min-Min method based on genetic algorithms, which is a novel approach with the spatial separation criterion (SPC) as the evaluation function is presented to evaluate the segmentation performance of each subset of selected features. In this work, the SPC is defined as the Euclidean distance within class divided by the Euclidean distance between classes in the spatial domain. It is shown that with feature selection the tree-structured wavelet decomposition based on non-separable wavelet frames has better performances than the tree-structured wavelet decomposition based on separable wavelet frames and pyramidal decomposition based on separable and non-separable wavelet frames in the experiments. Finally, we compare to the segmentation results evaluated with the templates of the textured images and verify the effectiveness of the proposed criterion. Moreover, it is proved that the discriminatory characteristics of features do spread over all subbands from the feature selection vector.
An optimun design for N(arbitrary)-sheet capacitive Jaumann elctromagnetic (EM) wave absorber, using genetic algorithm will be presented. This algorithm is a random optimization method based on the genetic relation in the human being. We show the bandwidth for two-sheet capacitive Jaumann absorber can be expanded even more than 108% showed by knott, by using this algorithm and without imposing the double-notch design criteria. We also show that our results approaches knott's results when we restrict the characteristic impedances and lengths of the lines to vary within a very short range. We also design one-sheet and three-sheet capacitive Jaumann absorbers. The only restriction used here is about the meaningful range for the design variables. The goal of this algorithm is that we can impose arbitrary restriction about the range of the variation of the variables. So we can see the performance behaviour with the range dimension of the variables, and we can obtain different optimum results for different ranges. Finally we obtain a 20-dB attenuation bandwidth more than 145% for one-sheet, 173% for two-sheet (compare with 108% obtained in [1]) and 193% for three-sheet capacitive Jaumann EM absorbers, with some acceptable short range for the variables. We design the one-sheet and two-sheet capacitive Jaumann absorbers at low frequency and the three-sheet at high frequency. The 20-dB attenuation bandwidth obtained for the one-sheet and two-sheet capacitive Jaumann absorbers are respectively, from 10 to 77 MHz and, from 4 to 61 MHz. For the three-sheet capacitive Jaumann absorber the 20-dB attenuation bandwidth obtained is, from 0.8 GHz to 280 GHz.
Katsuhiko SAKAUE Akira AMANO Naokazu YOKOYA
In this paper, the authors present general views of computer vision and image processing based on optimization. Relaxation and regularization in both broad and narrow senses are used in various fields and problems of computer vision and image processing, and they are currently being combined with general-purpose optimization algorithms. The principle and case examples of relaxation and regularization are discussed; the application of optimization to shape description that is a particularly important problem in the field is described; and the use of a genetic algorithm (GA) as a method of optimization is introduced.
A trinary-phased array, in which a phase quantization unit of phase shifters is 120 degrees is examined. The phase quantization unit of 120 degrees is the roughest value in practical phased array applications. Despite its rough phase quantization, the sidelobe level of less than -9 dB is attained by a genetic algorithm approach.
Wen-Jan CHEN Shen-Chuan TAI Po-Jen CHENG
In this letter, a new scheme of designing two-level minimum mean square error quantizer for image coding is proposed. Genetic algorithm is applied to achieve this goal. Comparisons of results with various methods have verified, the proposed method can reach nearly optimal quantization with only less iterations.
The disk allocation problem examined in this paper is finding a method to distribute a Binary Cartesian Product File on multiple disks to maximize parallel disk I/O accesses for partial match retrieval. This problem is known to be NP-hard, and heuristic approaches have been applied to obtain suboptimal solutions. Recently, efficient methods such as Binary Disk Modulo (BDM) and Error Correcting Code (ECC) methods have been proposed along with the restrictions that the number of disks in which files are stored should be a power of 2. In this paper, a new Disk Allocation method based on Genetic Algorithm (DAGA) is proposed. The DAGA does not place restrictions on the number of disks to be applied and it can allocate the disks adaptively by taking into account the data access patterns. Using the schema theory, it is proven that the DAGA can realize a near-optimal solution with high probability. Comparing the quality of solution derived by the DAGA with the General Disk Modulo (GDM), BDM, and ECC methods through the simulation, shows that 1) the DAGA is superior to the GDM method in all the cases and 2) with the restrictions being placed on the number of disks, the average response time of the DAGA is always less than that of the BDM method and greater than that of the ECC method in the absence of data skew and 3) when data skew is considered, the DAGA performs better than or equal to both BDM and ECC methods, even when restrictions on the number of disks are enforced.
We apply some variants of evolutionary computations to the fully-connected neural network model of associative memory. Among others, when we regard it as a parameter optimization problem, we notice that the model has some favorable properties as a test function of evolutionary computations. So far, many functions have been proposed for comparative study. However, as Whitley and his colleagues suggested, many of the existing common test functions have some problems in comparing and evaluating evolutionary computations. In this paper, we focus on the possibilities of using the fully-connected neural network model as a test function of evolutionary computations.
This paper proposes genetic algorithms (GAs) for path planning and trajectory planning of an autonomous mobile robot. Our GA-based approach has an advantage of adaptivity such that the GAs work even if an environment is time-varying or unknown. Therefore, it is suitable for both off-line and on-line motion planning. We first presents a GA for path planning in a 2D terrain. Simulation results on the performance and adaptivity of the GA on randomly generated terrains are shown. Then, we discuss an extension of the GA for solving both path planning and trajectory planning simultaneously.
Jianjun YAN Naoyuki TOKUDA Juichi MIYAMICHI
This paper presents a new compound constructive algorithm of neural networks whereby the fuzzy logic technique is explored as an efficient learning algorithm to implement an optimal network construction from an initial simple 3-layer network while the genetic algorithm is used to help design an improved network by evolutions. Numerical simulations on artificial life demonstrate that compared with the existing network design algorithms such as the constructive algorithms, the pruning algorithms and the fixed, static architecture algorithm, the present algorithm, called FuzGa, is efficient in both time complexity and network performance. The improved time complexity comes from the sufficiently small 3 layer design of neural networks and the genetic algorithm adopted partly because the relatively small number of layers facilitates an utilization of an efficient steepest descent method in narrowing down the solution space of fuzzy logic and partly because trappings into local minima can be avoided by genetic algorithm, contributing to considerable saving in time in the processing of network learning and connection. Compared with 54. 8 minutes of MLPs with 65 hidden neurons, 63. 1 minutes of FlexNet or 96. 0 minutes of Pruning, our simulation results on artificial life show that the CPU time of the present method reaching the target fitness value of 100 food elements eaten for the present FuzGa has improved to 42. 3 minutes by SUN's SPARCstation-10 of SuperSPARC 40 MHz machine for example. The role of hidden neurons is elucidated in improving the performance level of the neural networks of the various schemes developed for artificial life applications. The effect of population size on the performance level of the present FuzGa is also elucidated.
Retrieving the unknown parameters of scattering objects from measured field data is the subject of microwave imaging. This is naturally and usually posed as an optimization problem. In this paper, micro genetic algorithm coupled with deterministic method is applied to the shape reconstruction of perfectly conducting cylinders. The combined approach, with a very small population like the micro genetic algorithm, performs much better than the conventional large population genetic algorithms (GA's) in reaching the optimal region. In addition, we propose a criterion for switching the micro GA to the deterministic optimizer. The micro GA is utilized to effectively locate the vicinity of the global optimum, while the deterministic optimizer is employed to efficiently reach the optimum after inside this region. Therefore, the combined approach converges to the optimum much faster than the micro GA. The proposed approach is first tested by a function optimization problem, then applied to reconstruct perfectly conducting cylinders from both synthetic data and real data. Impressive and satisfactory results are obtained for both cases, which demonstrate the validity and effectiveness of the proposed approach.
We apply evolutionary algorithms to neural network model of associative memory. In the model, some of the appropriate configurations of the synaptic weights allow the network to store a number of patterns as an associative memory. For example, the so-called Hebbian rule prescribes one such configuration. However, if the number of patterns to be stored exceeds a critical amount (over-loaded), the ability to store patterns collapses more or less. Or, synaptic weights chosen at random do not have such an ability. In this paper, we describe a genetic algorithm which successfully evolves both the random synapses and over-loaded Hebbian synapses to function as associative memory by adaptively pruning some of the synaptic connections. Although many authors have shown that the model is robust against pruning a fraction of synaptic connections, improvement of performance by pruning has not been explored, as far as we know.
Noritaka SHIGEI Hiromi MIYAJIMA
A reconfiguration method for processor array is proposed in this paper. In the method, genetic algorithm (GA) is used for searching effective spare arrangement, which leads to successful reconfiguration. The effectiveness of the method is demonstrated by computer simulations.
Jing-Wein WANG Chin-Hsing CHEN Jeng-Shyang PAN
In this paper, the performances of texture classification based on pyramidal and uniform decomposition are comparatively studied with and without feature selection. This comparison using the subband variance as feature explores the dependence among features. It is shown that the main problem when employing 2-D non-separable wavelet transforms for texture classification is the determination of the suitable features that yields the best classification results. A Max-Max algorithm which is a novel evaluation function based on genetic algorithms is presented to evaluate the classification performance of each subset of selected features. It is shown that the performance with feature selection in which only about half of features are selected is comparable to that without feature selection. Moreover, the discriminatory characteristics of texture spread more in low-pass bands and the features extracted from the pyramidal decomposition are more representative than those from the uniform decomposition. Experimental results have verified the selectivity of the proposed approach and its texture capturing characteristics.
Md.Mohsin MOLLAH Takashi YAHAGI
Image restoration using estimated parameters of image model and noise statistics is presented. The image is modeled as the output of a 2-D noncausal autoregressive (NCAR) model. The parameter estimation process is done by using the autocorrelation function and a biased term to a conventional least-squares (LS) method for the noncausal modeling. It is shown that the proposed method gives better results than the other parameter estimation methods which ignore the presence of the noise in the observation data. An appropriate image model selection process is also presented. A genetic algorithm (GA) for solving a multiobjective function with single constraint is discussed.
This letter presents a novel variable-rate vector quantizer (VQ) design algorithm, which is a hybrid approach combining a genetic algorithm with the entropy-constrained VQ (ECVQ) algorithm. The proposed technique outperforms the ECVQ algorithm in the sense that it reaches to a nearby global optimum rather than a local one. Simulation results show that, when applied to the image coding, the technique achieves higher PSNR and image quality than those of ECVQ algorithm.
This paper proposes an automatic structural programming system. Genetic Programming achieves success for automatic programming using the evolutionary process. However, the approach doesn't deal with the essential program concept in the sense of what is called a program in software science. It is useful that a program be structured by various sub-structures, i. e. subroutines, however, the above-mentioned approach treats a single program as one sequence. As a result of the above problem, there is a lack of reusability, flexibility, and a decreases in the possibility of use as a utilitarian programming system. In order to realize a structural programming system, this paper proposes a method which can generate a program constructed by subroutines, named formula, using the evolutionary process.
Beatrice M. OMBUKI Morikazu NAKAMURA Kenji ONAGA
This paper presents an evolutionary scheduling scheme for solving the job shop scheduling problem (JSSP) and other combinatorial optimization problems. The approach is based on a genetized-knowledge genetic algorithm (gkGA). The basic idea behind the gkGA is that knowledge of heuristics which are used in the GA is also encoded as genes alongside the genetic strings, referred to as chromosomes. Furthermore, during the GA selection, weaker heuristics die out while stronger ones survive for a given problem instance. We evaluate our evolutionary scheduling scheme based on the gkGA approach using well known benchmark instances for the JSSP. We observe that the gkGA based scheme is shown to consistently outperform the scheme based on ordinary GAs. In addition the gkGA-based scheme removes the problem of instance dependency.
Sang-Woon KIM Seong-Hyo SHIN Yoshinao AOKI
We present experimental results for a structural learning method of feed-forward neural-network classifiers using Principal Component Analysis (PCA) network and Species Genetic Algorithm (SGA). PCA network is used as a means for reducing the number of input units. SGA, a modified GA, is employed for selecting the proper number of hidden units and optimizing the connection links. Experimental results show that the proposed method is a useful tool for choosing an appropriate architecture for high dimensions.