1-9hit |
Seok Gyu CHOI Young Hyun BAEK Jung Hun OH Min HAN Seok Ho BANG Jin-Koo RHEE
In this study, we have performed both the channel modification of the conventional MHEMT (Metamorphic High Electron Mobility Transistor) and the variation of gate recess width to improve the breakdown and RF characteristics. The modified channel consists of the InxGa1-xAs and the InP layers. Since InP has lower impact ionization coefficient than In0.53Ga0.47As, we have adopted the InP-composite channel in the modified MHEMT. Also, the gate recess width is both functions of breakdown and RF characteristic of a HEMT structure. Therefore, we have studied the breakdown and RF characteristic for various gate recess widths in MHEMT. We have compared breakdown characteristic of the InP-composite channel with that of conventional MHEMT. It is shown that on and off state breakdown voltages of the InP-composite channel MHEMT were increased by about 20 and 27%, respectively, compared with the conventional structure. Also, breakdown voltage of the InP-composite channel MHEMT was increased with increasing gate recess width. The fT was increased with decreasing the gate recess width, whereas fmax was increased with increasing the gate recess width. Also, we extracted small-signal parameters. It was shown that Gd of the InP-composite channel MHEMT is decreased about by 30% compared with the conventional MHEMT. Therefore, the suppression of the impact ionization in the InP-composite channel increases the breakdown voltage and decreases the output conductance.
Kazuya NISHIHORI Yasuyuki MIYAMOTO
In this paper, we describe the effect of p-regions on the I-V kink in GaAs FETs. A kink-free p-pocket-type self-aligned gate GaAs MESFET (PP-MESFET), which does not include p-regions under the channel, has been analyzed and compared with a conventional buried-p-type self-aligned gate GaAs MESFET (BP-MESFET) using two-dimensional device simulation. The relation between the I-V kink and the layout of p-regions has been demonstrated by numerical simulation for the first time. For both the BP-MESFET and PP-MESFET, impact ionization produces holes in high-field regions. The holes accumulate under the channel, widen the channel, and cause an abrupt increase in drain current in turn in the BP-MESFET. On the other hand, in the PP-MESFET, holes generated in the high-field region are transported to the source region easily over the lower barrier owing to the absence of p-regions under the channel. Holes do not accumulate under the channel, leading to kink-free I-V characteristics of the PP-MESFET. P-regions should be located so as not to cause the accumulation of holes in GaAs FETs where p-regions are required for high-frequency performance.
Seok Gyu CHOI Jung Hun OH Bok Hyung LEE Byeong Ok LIM Sung Woon MOON Dong Hoon SHIN Sam Dong KIM Jin Koo RHEE
To perform a comparative study, we experimented on two differential epitaxial structures, the conventional metamorphic high-electron-mobility-transistor (MHEMT) using the InAlAs/InGaAs/InAlAs structure and the InP-composite-channel MHEMT adopting the InAlAs/InGaAs/InP structure. Compared with the conventional MHEMT, the InP-composite-channel MHEMT shows improved breakdown performance; more than approximately 3.8 V. This increased breakdown voltage can be explained by the lower impact ionization coefficient of the InP-composite-channel MHEMT than that of the conventional MHEMT. The InP-composite-channel MHEMT also shows improved Radio Frequency characteristics of S21 gain of approximately 4.35 dB at 50 GHz, and a cutoff frequency (fT) and a maximum frequency of oscillation (fmax) of approximately 124 GHz and 240 GHz, respectively, were obtained. These are due to decreases in go and gm.
Yoshifumi KAWAKAMI Naohiro KUZE Jin-Ping AO Yasuo OHNO
DC and RF performances of AlGaN/GaN HEMTs are simulated using a two-dimensional device simulator with the material parameters of GaN and AlGaN. The cut-off frequency is estimated as 205 GHz at the gate length of 0.05 µm and the drain breakdown voltage at this gate length is over 10 V. The values are satisfactory for millimeter wavelength power applications. The use of thin AlGaN layers has key importance to alleviate gate parasitic capacitance effects at this gate length.
Electron emissions from single-crystalline diamond surfaces by internally exciting electrons from the valence to conduction bands have been investigated. Monte Carlo simulations have been employed to estimate the impact ionization rates of carriers in diamond under high electric fields up to 1107V/cm. The calculations demonstrate substantial impact ionization rates which rapidly increase with increasing electric fields above 8105V/cm. Highly efficient electron emissions with high emission current efficiencies of approximate unity have been attained from a MIS-type diamond layered structure that are composed of heavily ion-implanted buried layer (M), undoped diamond (I) and hydrogenated p-type diamond (S) with an emission surface of a negative electron affinity. The highly efficient emission mechanism is discussed in relation to the field excitation of electrons from the valence band to the conduction band in the undoped diamond layer and the carrier transport to the diamond surface.
Christoph JUNGEMANN Stefan KEITH Martin BARTELS Bernd MEINERZHAGEN
The full-band Monte Carlo technique is currently the most accurate device simulation method, but its usefulness is limited because it is very CPU intensive. This work describes efficient algorithms in detail, which raise the efficiency of the full-band Monte Carlo method to a level where it becomes applicable in the device design process beyond exemplary simulations. The k-space is discretized with a nonuniform tetrahedral grid, which minimizes the discretization error of the linear energy interpolation and memory requirements. A consistent discretization of the inverse mass tensor is utilized to formulate efficient transport parameter estimators. Particle scattering is modeled in such a way that a very fast rejection technique can be used for the generation of the final state eliminating the main cause of the inefficiency of full-band Monte Carlo simulations. The developed full-band Monte Carlo simulator is highly efficient. For example, in conjunction with the nonself-consistent simulation technique CPU times of a few CPU minutes per bias point are achieved for substrate current calculations. Self-consistent calculations of the drain current of a 60nm-NMOSFET take about a few CPU hours demonstrating the feasibility of full-band Monte Carlo simulations.
Morikazu TSUNO Shin YOKOYAMA Kentaro SHIBAHARA
MOSFETs with sub-0.1 µm gate length were fabricated, and their low temperature operation was investigated. The drain current for drain voltage of 2 V increased monotonously as temperature was lowered to 15 K without an influence of the freeze-out effect. Moreover, the increase in the drain current was enhanced by the gate length reduction. The hot-carrier effect at low temperature was also investigated. Impact-ionization decreased as temperature was lowered under the condition of drain voltage 2 V. The decreasing ratio was enhanced as gate length became shorter. We consider this phenomenon is attributed to the non-steady-stationary effect. As a result, device degradation by DC stressing was reduced at 77 K in comparison with room temperature. In the case of 0.1 µm MOSFET, drain current was not degraded in condition of DC stress with gate- and drain-voltage was 1.5 V.
Ken-ichiro SONODA Mitsuru YAMAJI Kenji TANIGUCHI Chihiro HAMAGUCHI Tatsuya KUNIKIYO
We propose a nonlocal impact ionization model applicable for the drain region where electric field increases exponentially. It is expressed as a function of an electric field and a characteristic length which is determined by a thickness of gate oxide and a source/drain junction depth. An analytical substrate current model for n-MOSFET is also derived from the new nonlocal impact ionization model. The model well explains the reason why the theoretical characteristic length differs from empirical expressions used in a pseudo two-dimensional model for MOSFET's. The nonlocal impact ionization model implemented in a device simulator demonstrates that the new model can predict substrate current correctly in the framework of drift-diffusion model.
Paul G. SCROBOHACI Ting-wei TANG
Impact ionization () in two n+-n--n+ device structures is investigated. Data obtained from self-consistent Monte-Carlo (SCMC) simulations of the devices is used to show that the average energy (