1-5hit |
The novel SCR-based (silicon controlled rectifier) device for ESD power clamp is presented in this paper. The proposed device has a high holding voltage and a high triggering current characteristic. These characteristics enable latch-up immune normal operation as well as superior full chip ESD protection. The device has a small area in requirement robustness in comparison to ggNMOS (gate grounded NMOS). The proposed ESD protection device is designed in 0.25 µm and 0.5 µm CMOS Technology. In the experimental result, the proposed ESD clamp has a double trigger characteristic, a high holding voltage of 4 V and a high trigger current of above 350 mA. The robustness has measured to HBM 8 kV (HBM: Human Body Model) and MM 400 V (MM: Machine Model). The proposed device has a high level It2 of 52 mA/ µm approximately.
Jae-Young PARK Jong-Kyu SONG Chang-Soo JANG San-Hong KIM Won-Young JUNG Taek-Soo KIM
The holding voltage of high-voltage devices under the snapback breakdown condition has been known to be much smaller than the power supply voltage. Such characteristics cause high-voltage ICs to be susceptible to the transient latch-up failure in the practical system applications, especially when these devices are used as the ESD power clamp circuit. A new latchup-free design of the ESD power clamp circuit with stacked-bipolar devices is proposed and successfully verified in a 0.35 µm BCD (Bipolar-CMOS-DMOS) process to achieve the desired ESD level. The total holding voltage of the stacked-bipolar devices in the snapback breakdown condition can be larger than the power supply voltage.
Yoshihide KOMATSU Koichiro ISHIBASHI Makoto NAGATA
This paper describes a method of reducing substrate noise and random variability utilizing a self-adjusted forward body bias (SA-FBB) circuit. To achieve this, we designed a test chip (130 nm CMOS 3-well) that contained an on-chip oscilloscope for detecting dynamic noise from various frequency noise sources, and another test chip (90 nm CMOS 2-well) that contained 10-M transistors for measuring random variability tendencies. Under SA-FBB conditions, it reduced noise by 35.3-69.8% and reduced random variability σ (Ids) by 23.2-57.9%.
Hermann BRAND Siegfried SELBERHERR
An advanced model for self-heating effects in power semiconductor devices is derived from principles of irreversible thermodynamics. The importance of the entropy balance equation is emphasized. The governing equations for the coupled transport of charge carriers and heat are valid in both the stationary and transient regimes. Four characteristic effects contributing to the heat generation can be identified: Joule heating, recombination heating, Thomson heating and carrier source heating. Bandgap narrowing effects are included. Hot carrier effects are neglected. Numerical methods to solve the governing equations for the coupled transport of charge carriers and heat are described. Finally, results obtained in simulating latch-up in an IGT are discussed.
Hitoshi YAMAGUCHI Hiroaki HIMI Seiji FUJINO Tadashi HATTORI
The composition of CMOS control circuit and Vertical-Double-Diffused-MOS (VDMOS) power device on a single chip by using Silicon-On-Insulator (SOI) structure is formulated. Because all the MOS transistors in the CMOS control circuit are not isolated by the trenches, the interference phenomenon between SOI and the substrate is studied. Latch-up is detected thus, the construction of a mechanism to prevent latch-up is also studied. To evaluate the SOI CMOS characteristics the effects of voltage fluctuation on the substrate is analized. The latch-up mechanism is also analized by transient device simulation. As a result of this study a guideline for the immunity of latch-up is established, the features of the mechanism are as follows. First, the latch-up trigger is the charging current of the condenser composed of the oxide layer in the SOI structure. Second, latch-up is normally caused by positive feedback between the parasitic PNP-transistor and the parasitic NPN-transistor. However, in this case, electron diffusion toward the P-well is dominant after the parasitic PNP-transistor falls into high level injection. This feature is different from the conventional mechanism. The high level injection is caused by carrier accumulation in the N- region. Considering the above, it is necessary to; (1) reduce the charging current of the condenser, (2) reduce the parasitic resistance in the N- region of SOI, and (3) reduce the carrier accumulation in SOI for immunity from latch-up.