Keyword Search Result

[Keyword] latch-up(5hit)

1-5hit
  • Design of SCR-Based ESD Protection Device for Power Clamp Using Deep-Submicron CMOS Technology

    Yongseo KOO  

     
    PAPER-Electronic Circuits

      Vol:
    E92-C No:9
      Page(s):
    1188-1193

    The novel SCR-based (silicon controlled rectifier) device for ESD power clamp is presented in this paper. The proposed device has a high holding voltage and a high triggering current characteristic. These characteristics enable latch-up immune normal operation as well as superior full chip ESD protection. The device has a small area in requirement robustness in comparison to ggNMOS (gate grounded NMOS). The proposed ESD protection device is designed in 0.25 µm and 0.5 µm CMOS Technology. In the experimental result, the proposed ESD clamp has a double trigger characteristic, a high holding voltage of 4 V and a high trigger current of above 350 mA. The robustness has measured to HBM 8 kV (HBM: Human Body Model) and MM 400 V (MM: Machine Model). The proposed device has a high level It2 of 52 mA/ µm approximately.

  • A Latchup-Free ESD Power Clamp Circuit with Stacked-Bipolar Devices for High-Voltage Integrated Circuits

    Jae-Young PARK  Jong-Kyu SONG  Chang-Soo JANG  San-Hong KIM  Won-Young JUNG  Taek-Soo KIM  

     
    PAPER

      Vol:
    E92-C No:5
      Page(s):
    671-675

    The holding voltage of high-voltage devices under the snapback breakdown condition has been known to be much smaller than the power supply voltage. Such characteristics cause high-voltage ICs to be susceptible to the transient latch-up failure in the practical system applications, especially when these devices are used as the ESD power clamp circuit. A new latchup-free design of the ESD power clamp circuit with stacked-bipolar devices is proposed and successfully verified in a 0.35 µm BCD (Bipolar-CMOS-DMOS) process to achieve the desired ESD level. The total holding voltage of the stacked-bipolar devices in the snapback breakdown condition can be larger than the power supply voltage.

  • Substrate-Noise and Random-Variability Reduction with Self-Adjusted Forward Body Bias

    Yoshihide KOMATSU  Koichiro ISHIBASHI  Makoto NAGATA  

     
    PAPER-Digital

      Vol:
    E90-C No:4
      Page(s):
    692-698

    This paper describes a method of reducing substrate noise and random variability utilizing a self-adjusted forward body bias (SA-FBB) circuit. To achieve this, we designed a test chip (130 nm CMOS 3-well) that contained an on-chip oscilloscope for detecting dynamic noise from various frequency noise sources, and another test chip (90 nm CMOS 2-well) that contained 10-M transistors for measuring random variability tendencies. Under SA-FBB conditions, it reduced noise by 35.3-69.8% and reduced random variability σ (Ids) by 23.2-57.9%.

  • Electrothermal Analysis of Latch-Up in an Insulated Gate Transistor (IGT)

    Hermann BRAND  Siegfried SELBERHERR  

     
    PAPER-Device Simulation

      Vol:
    E77-C No:2
      Page(s):
    179-186

    An advanced model for self-heating effects in power semiconductor devices is derived from principles of irreversible thermodynamics. The importance of the entropy balance equation is emphasized. The governing equations for the coupled transport of charge carriers and heat are valid in both the stationary and transient regimes. Four characteristic effects contributing to the heat generation can be identified: Joule heating, recombination heating, Thomson heating and carrier source heating. Bandgap narrowing effects are included. Hot carrier effects are neglected. Numerical methods to solve the governing equations for the coupled transport of charge carriers and heat are described. Finally, results obtained in simulating latch-up in an IGT are discussed.

  • Phenomenon and Mechanism of CMOS Latch-up Induced by Substrate Voltage Fluctuation in Thick Film SOI Structure

    Hitoshi YAMAGUCHI  Hiroaki HIMI  Seiji FUJINO  Tadashi HATTORI  

     
    PAPER-SOI Devices

      Vol:
    E75-C No:12
      Page(s):
    1447-1452

    The composition of CMOS control circuit and Vertical-Double-Diffused-MOS (VDMOS) power device on a single chip by using Silicon-On-Insulator (SOI) structure is formulated. Because all the MOS transistors in the CMOS control circuit are not isolated by the trenches, the interference phenomenon between SOI and the substrate is studied. Latch-up is detected thus, the construction of a mechanism to prevent latch-up is also studied. To evaluate the SOI CMOS characteristics the effects of voltage fluctuation on the substrate is analized. The latch-up mechanism is also analized by transient device simulation. As a result of this study a guideline for the immunity of latch-up is established, the features of the mechanism are as follows. First, the latch-up trigger is the charging current of the condenser composed of the oxide layer in the SOI structure. Second, latch-up is normally caused by positive feedback between the parasitic PNP-transistor and the parasitic NPN-transistor. However, in this case, electron diffusion toward the P-well is dominant after the parasitic PNP-transistor falls into high level injection. This feature is different from the conventional mechanism. The high level injection is caused by carrier accumulation in the N- region. Considering the above, it is necessary to; (1) reduce the charging current of the condenser, (2) reduce the parasitic resistance in the N- region of SOI, and (3) reduce the carrier accumulation in SOI for immunity from latch-up.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.