Keyword Search Result

[Keyword] load modulation(4hit)

1-4hit
  • An FSK Inductive-Coupling Transceiver Using 60mV 0.64fJ/bit 0.0016mm2 Load-Modulated Transmitter and LC-Oscillator-Based Receiver in 65nm CMOS for Energy-Budget-Unbalanced Application Open Access

    Kenya HAYASHI  Shigeki ARATA  Ge XU  Shunya MURAKAMI  Cong Dang BUI  Atsuki KOBAYASHI  Kiichi NIITSU  

     
    BRIEF PAPER

      Vol:
    E102-C No:7
      Page(s):
    585-589

    This work presents an FSK inductive-coupling transceiver using a load-modulated transmitter and LC-oscillator-based receiver for energy-budget-unbalanced applications. By introducing the time-domain load modulated transmitter for FSK instead of the conventional current-driven scheme, energy reduction of the transmitter side is possible. For verifying the proposed scheme, a test chip was fabricated in 65nm CMOS, and two chips were stacked for verifying the inter-chip communication. The measurement results show 0.64fJ/bit transmitter power consumption while its input voltage is 60mV, and the communication distance is 150μm. The footprint of the transmitter is 0.0016mm2.

  • Interference Suppression Method between Primary Broadcasting and Secondary Systems Using Load Modulation

    Takuma ITO  Naoki HONMA  Keisuke TERASAKI  Kentaro NISHIMORI  Yoshitaka TSUNEKAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:5
      Page(s):
    861-869

    Controlling interference from the secondary system (SS) to the receiver of the primary system (PS) is an important issue when the SS uses the same frequency band as the television broadcast system. The reason includes that the SS is unaware of the interference imposed on the primary receiver (PS-Rx), which does not have a transmitter. In this paper, we propose an interference control method between PS-Rx and SS, where a load modulation scheme is introduced to the PS-Rx. In this method, the signal from the PS transmitting station is scattered by switching its load impedance. The SS observes the scattered channel and calculates the interference suppression weights for transmitting, and controls interference by transmit beamforming. A simulation shows that the Signal-to-Interference Ratio (SIR) with interference control is improved by up to 41.5dB compared to that without interference control at short distances; the results confirm that the proposed method is effective in controlling interference between PS-Rx and SS. Furthermore, we evaluate the Signal-to-Noise Ratio (SNR) and channel capacity at SS.

  • Experimental Evaluation of Passive MIMO Transmission with Load Modulation for RFID Application

    Keisuke TERASAKI  Naoki HONMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:7
      Page(s):
    1467-1473

    This paper describes experiments on passive Multiple-Input Multiple-Output (MIMO) transmission with load modulation. PIN diodes are used as the variable impedance element at the tag side to realize multi-level modulation. The results indicate that the transmission rate of passive MIMO is up to 2 times higher than that of Single-Input Single-Output (SISO) with the same transmission power when the distance between the reader and the tag is 0.5m. Also, when the distance is 1m, MIMO offers up to 1.7 times higher transmission rate than SISO. These results indicate that passive MIMO offers high-speed data transmission even when the distance is doubled.

  • Data Transmission Using Original Coils in Resonant Wireless Power Transmission

    Takashi MARUYAMA  Tatsuya SHIMIZU  Mamoru AKIMOTO  Kazuki MARUTA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:11
      Page(s):
    3172-3174

    We propose a data transmission method for resonant wireless power transmission systems. In order to transmit data, we use the coils originally designed for power transmission, no additional antennas are required. We focus on uplink data transmission and adopt the load modulation technique. This configuration yields mid-range data transmission without transmitting power. In addition, the proposal enables simultaneous power feeding and uplink data transmission. We make a prototype demonstrating resonant wireless power transmission and measure its S-parameter under some load conditions. The results confirm the potential of load modulation in supporting uplink data transmission. Additionally, the results are elucidated by analyzing an equivalent circuit. Measured S-parameter and equivalent circuit response are found to be similar.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.