Keyword Search Result

[Keyword] optical communications(26hit)

1-20hit(26hit)

  • Channel Arrangement Design in Lumped Amplified WDM Transmission over NZ-DSF Link with Nonlinearity Mitigation Using Optical Phase Conjugation Open Access

    Shimpei SHIMIZU  Takayuki KOBAYASHI  Takeshi UMEKI  Takushi KAZAMA  Koji ENBUTSU  Ryoichi KASAHARA  Yutaka MIYAMOTO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2022/01/17
      Vol:
    E105-B No:7
      Page(s):
    805-813

    Optical phase conjugation (OPC) is an all-optical signal processing technique for mitigating fiber nonlinearity and is promising for building cost-efficient fiber networks with few optic-electric-optic conversions and long amplification spacing. In lumped amplified systems, OPC has a little nonlinearity mitigation efficiency for nonlinear distortion induced by cross-phase modulation (XPM) due to the asymmetry of power and chromatic dispersion (CD) maps during propagation in transmission fiber. In addition, the walk-off of XPM-induced noise becomes small due to the CD compensation effect of OPC, so the deterministic nonlinear distortion increases. Therefore, lumped amplified transmission systems with OPC are more sensitive to channel spacing than conventional systems. In this paper, we show the channel spacing dependence of NZ-DSF transmission using amplification repeater with OPC. Numerical simulations show comprehensive characteristics between channel spacing and CD in a 100-Gbps/λ WDM signal. An experimental verification using periodically poled LiNbO3-based OPC is also performed. These results suggest that channel spacing design is more important in OPC-assisted systems than in conventional dispersion-unmanaged systems.

  • Straight-Line Dual-Polarization PSK Transmitter with Polarization Differential Modulation

    Shota ISHIMURA  Kosuke NISHIMURA  Yoshiaki NAKANO  Takuo TANEMURA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2020/10/27
      Vol:
    E104-B No:5
      Page(s):
    490-496

    Coherent transceivers are now regarded as promising candidates for upgrading the current 400Gigabit Ethernet (400GbE) transceivers to 800G. However, due to the complicated structure of a dual-polarization IQ modulator (DP-IQM) with its bulky polarization-beam splitter/comber (PBS/PBC), the increase in the transmitter size and cost is inevitable. In this paper, we propose a compact PBS/PBC-free transmitter structure with a straight-line configuration. By using the concept of polarization differential modulation, the proposed transmitter is capable of generating a DP phase-shift-keyed (DP-PSK) signal, which makes it directly applicable to the current coherent systems. A detailed analysis of the system performance reveals that the imperfect equalization and the bandwidth limitation at the receiver are the dominant penalty factors. Although such a penalty is usually unacceptable in long-haul applications, the proposed transmitter can be attractive due to its significant simplicity and compactness for short-reach applications, where the cost and the footprint are the primary concerns.

  • Nonlinearity Mitigation of PDM-16QAM Signals Using Multiple CSI-OPCs in Ultra-Long-Haul Transmission without Excess Penalty Open Access

    Takeshi UMEKI  Takayuki KOBAYASHI  Akihide SANO  Takuya IKUTA  Masashi ABE  Takushi KAZAMA  Koji ENBUTSU  Ryoichi KASAHARA  Yutaka MIYAMOTO  

     
    PAPER

      Pubricized:
    2020/05/22
      Vol:
    E103-B No:11
      Page(s):
    1226-1232

    We developed a polarization-independent and reserved-band-less complementary spectral inverted optical phase conjugation (CSI-OPC) device using dual-band difference frequency generation based on highly efficient periodically poled LiNbO3 waveguide technologies. To examine the nonlinearity mitigation in a long-haul transmission using a large number of OPCs, we installed a CSI-OPC device in the middle of a pure silica core fiber-based recirculating loop transmission line with a length of 320km. First, we examined the fiber-input power tolerance after 5,120-km and 6,400-km transmission using 22.5-Gbaud PDM-16QAM 10-channel DWDM signals and found a Q-factor improvement of over 1.3dB along with enhanced power tolerance thanks to mitigating the fiber nonlinearity. We then demonstrated transmission distance extension using the CSI-OPC device. The use of multiple CSI-OPCs enables an obvious performance improvements attained by extending the transmission distance from 6,400km to 8,960km, which corresponds to applying the CSI-OPC device 28 times. Moreover, there was no Q-factor degradation for the link in a linear regime after applying the CSI-OPC device more than 16 times. These results demonstrate that the CSI-OPC device can improve the nonlinear tolerance of PDM-16QAM signals without an excess penalty.

  • R&D of 3M Technologies towards the Realization of Exabit/s Optical Communications Open Access

    Toshio MORIOKA  Yoshinari AWAJI  Yuichi MATSUSHIMA  Takeshi KAMIYA  

     
    INVITED PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1707-1715

    Research efforts initiated by the EXAT Initiative are described to realize Exabit/s optical communications, utilizing the 3M technologies, i.e. multi-core fiber, multi-mode control and multi-level modulation.

  • One to Six Wavelength Multicasting of RZ-OOK Based on Picosecond-Width-Tunable Pulse Source with Distributed Raman Amplification

    Irneza ISMAIL  Quang NGUYEN-THE  Motoharu MATSUURA  Naoto KISHI  

     
    PAPER-Advanced Photonics

      Vol:
    E98-C No:8
      Page(s):
    816-823

    All-optical 1-to-6 wavelength multicasting of a 10-Gb/s picosecond-tunable-width converted return-to-zero (RZ)-on-off-keying (OOK) data signal using a wideband-parametric pulse source from a distributed Raman amplifier (DRA) is experimentally demonstrated. Width-tunable wavelength multicasting within the C-band with approximately 40.6-nm of separation with various compressed RZ data signal inputs have been proposed and demonstrated. The converted multicast pulse widths can be flexibly controlled down to 2.67 ps by tuning the Raman pump powers of the DRA. Nearly equal pulse widths at all multicast wavelengths are obtained. Furthermore, wide open eye patterns and penalties less than 1.2 dB at the 10-9 bit-error-rate (BER) level are found.

  • High-Speed Full-Duplex Optical Wireless Communication System with Single Channel Imaging Receiver for Personal Area Networks

    Ke WANG  Ampalavanapillai NIRMALATHAS  Christina LIM  Efstratios SKAFIDAS  

     
    PAPER

      Vol:
    E96-C No:2
      Page(s):
    180-186

    In this paper, we propose a high-speed full-duplex optical wireless communication system using a single channel imaging receiver for personal area network applications. This receiver is composed of an imaging lens, a small sensitive-area photodiode, and a 2-aixs actuator and it can reject most of the background light. Compared with the previously proposed system with single wide field-of-view (FOV) non-imaging receiver, the coverage area at 12.5 Gb/s is extended by > 20%. Furthermore, since the rough location information of the user is available in our proposed system, instead of searching for the focused light spot over a large area on the focal plane of the lens, only a small possible area needs to be scanned. In addition, by pre-setting a proper comparison threshold when searching for the focused light spot, the time needed for searching can be further reduced. Proof-of-concept experiments have been carried out and the results show that with this partial searching algorithm and pre-set threshold, better performance is achieved.

  • A High-Speed Low-Complexity Time-Multiplexing Reed-Solomon-Based FEC Architecture for Optical Communications

    Jeong-In PARK  Hanho LEE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E95-A No:12
      Page(s):
    2424-2429

    A high-speed low-complexity time-multiplexing Reed-Solomon-based forward error correction architecture based on the pipelined truncated inversionless Berlekamp-Massey algorithm is presented in this paper. The proposed architecture has very high speed and very low hardware complexity compared with conventional Reed-Solomon-based forward error correction architectures. Hardware complexity is improved by employing a truncated inverse Berlekamp-Massey algorithm. A high-speed and high-throughput data rate is facilitated by employing a three-parallel processing pipelining technique and modified syndrome computation block. The time-multiplexing method for pipelined truncated inversionless Berlekamp-Massey architecture is used in the parallel Reed-Solomon decoder to reduce hardware complexity. The proposed architecture has been designed and implemented with 90-nm CMOS technology. Synthesis results show that the proposed 16-channel Reed-Solomon-based forward error correction architecture requires 417,600 gates and can operate at 640 MHz to achieve a throughput of 240 Gb/s. The proposed architecture can be readily applied to Reed-Solomon-based forward error correction devices for next-generation short-reach optical communications.

  • Convergence Analysis of TAPPM Decoders for Deep Space Optical Channels

    Nikhil JOSHI  Adrish BANERJEE  Jeong Woo LEE  

     
    LETTER-Communication Theory and Signals

      Vol:
    E95-A No:8
      Page(s):
    1435-1438

    The convergence behavior of turbo APPM (TAPPM) decoding is analyzed by using a three-dimensional extrinsic information transfer (EXIT) chart and the decoding trajectory. The signal-to-noise ratio (SNR) threshold, below which iterative decoding fails to converge, is predicted by using the 3-D EXIT chart analysis. Bit error rate performances of TAPPM schemes validate the EXIT-chart-based SNR threshold predictions. Outer constituent codes of TAPPM are chosen to show the lowest SNR threshold with the aid of EXIT chart analysis.

  • All-Optical NRZ-to-RZ Data Format Conversion with Picosecond Duration-Tunable and Pedestal Suppressed Operations

    Quang NGUYEN-THE  Motoharu MATSUURA  Hung NGUYEN TAN  Naoto KISHI  

     
    PAPER

      Vol:
    E94-C No:7
      Page(s):
    1160-1166

    We demonstrate an all-optical picosecond pulse duration-tunable nonreturn-to-zero (NRZ)-to-return-to-zero (RZ) data format conversion using a Raman amplifier-based compressor and a fiber-based four-wave mixing (FWM) switch. A NRZ data signal is injected into the fiber-based FWM switch (AND gate) with a compressed RZ clock by the Raman amplifier-based compressor, and convert to RZ data signal by the fiber-based FWM switch. The compressed RZ clock train acts as a pump signal in the fiber-based FWM switch to perform the NRZ-to-RZ data format conversion. By changing the Raman pump power of the Raman amplifier-based compressor, it is possible to tune the pulse duration of the converted RZ data signal from 15 ps to 2 ps. In all the tuning range, the receiver sensitivity at bit error rate (BER) of 10-9 for the converted RZ data signal was about 1.31.7 dB better than the receiver sensitivity of the input NRZ data signal. Moreover, the pulse pedestal of the converted RZ data signals is well suppressed owing to the FWM process in the fiber-based FWM switch.

  • A Novel Turbo Coded Modulation Scheme for Deep Space Optical Communications

    Sangmok OH  Inho HWANG  Adrish BANERJEE  Jeong Woo LEE  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E93-B No:5
      Page(s):
    1260-1263

    A novel turbo coded modulation scheme, called the turbo-APPM, for deep space optical communications is proposed. The proposed turbo-APPM is a serial concatenation of turbo codes, an accumulator and a pulse position modulation (PPM), where turbo codes act as an outer code while the accumulator and the PPM act together as an inner code. The generator polynomial and the puncturing rule for generating turbo codes are chosen to lower the bit error rate. At the receiver, the joint iterative decoding is performed between the inner decoder and the outer turbo decoder. In the outer decoder, local iterative decoding for turbo codes is conducted. Simulation results are presented showing that the proposed turbo-APPM outperforms all previously proposed schemes such as LDPC-APPM, RS-PPM and SCPPM reported in the literature.

  • An Optical Transimpedance Amplifier Using an Inductive Buffer Stage Technique

    Sang Hyun PARK  Quan LE  Bo-Hun CHOI  

     
    LETTER-Devices/Circuits for Communications

      Vol:
    E92-B No:6
      Page(s):
    2239-2242

    An inductive buffer peaking technique is proposed and demonstrated to extend the bandwidth of a 10-Gbit/s transimpedance amplifier (TIA) for optical communications. A TIA using this peaking technique is fabricated based on InGaP/GaAs HBT technology. The advantage of the proposed technique is verified by comparisons based on simulations and experiments. For these comparisons, three different types of TIAs using a basic gain stage, a shunt peaking gain stage and the proposed gain stage, respectively, are fabricated and measured. The measured performance of the proposed TIA shows that this bandwidth extension technique using inductive buffer peaking can be applied to circuit designs which demand wideband frequency response with low power consumption.

  • Alternate-Phase RZ Pulse Sequence Generation Using a Rational Harmonic Mode-Locked Fiber Ring Laser

    Yun Jong KIM  Hyun-Jeong JO  Young Yun CHUN  Chang-Soo PARK  

     
    PAPER-Transmission Systems and Technologies

      Vol:
    E88-B No:5
      Page(s):
    1970-1976

    We present and demonstrate a novel method of generating a π phase-alternated return-to-zero (RZ) signal together with pulse-amplitude equalization in a rational harmonic mode-locked fiber ring laser, by using a dual-drive Mach-Zehnder modulator. By adjusting the voltages applied to both arms of the modulator, amplitude-equalization and π phase shift can be achieved successfully at a 9.95 GHz repetition rate. The generated alternate-phase RZ signals show enhanced transmission performance in the single-mode fiber (SMF) links without dispersion compensation.

  • Recent Progress in Forward Error Correction for Optical Communication Systems

    Takashi MIZUOCHI  

     
    INVITED PAPER

      Vol:
    E88-B No:5
      Page(s):
    1934-1946

    The history of forward error correction in optical communications is reviewed. The various types of FEC are classified as belonging to three generations. The first generation FEC represents the first to be successful in submarine systems, when the use of RS(255, 239) became widespread as ITU-T G.975, and also as G.709 for terrestrial systems. As WDM systems matured, a quest began for a stronger second generation FEC. Several types of concatenated code were proposed for this, and were installed in commercial systems. The advent of third-generation FEC opened up new vistas for the next generation of optical communication systems. Thanks to soft decision decoding and block turbo codes, a net coding gain of 10.1 dB has been demonstrated experimentally. That brought us a number of positive impacts on existing systems. Each new generation of FEC was compared in terms of the ultimate coding gain. The Shannon limit was discussed for hard or soft decision decoding. Several functionalities employing the FEC framing were introduced, such as overall wrapping by the FEC frame enabling the asynchronous multiplexing of different clients' data. Fast polarization scrambling with FEC was effective in mitigating polarization mode dispersion, and the error monitor function proved useful for the adaptive equalization of both chromatic dispersion and PMD.

  • All-Optical Signal Processing Devices Based on Holey Fiber

    Ju Han LEE  

     
    INVITED PAPER

      Vol:
    E88-C No:3
      Page(s):
    327-334

    Holey Fiber (HF) technology has progressed rapidly in recent years and has resulted in the development of a wide range of optical fibers with unique and highly useful optical properties including endlessly single-mode guidance, and high optical nonlinearity. In this paper the state-of-the-art HF technology for all-optical signal processing devices is reviewed from a perspective of possible application for telecommunications.

  • Optical Packet Switching Network Based on Ultra-Fast Optical Code Label Processing

    Naoya WADA  Hiroaki HARAI  Fumito KUBOTA  

     
    INVITED PAPER

      Vol:
    E87-C No:7
      Page(s):
    1090-1096

    Ultrahigh-speed all-optical label processing method is proposed and experimentally demonstrated. This processing method dramatically increases the label processing capability. Optical packet switch (OPS) systems and networks based on OPS nodes are applications of optical processing technologies. For the experiment, we constructed the world's first 40 Gbit/s/port OPS prototype with an all-optical label processor, optical switch, optical buffer, and electronic scheduler. Three-hop optical packet routing using OPS nodes was experimentally demonstrated with it, verifying the feasibility of OPS networks.

  • Synchronous Optical Fiber Code-Division Multiple-Access Networks Using Concatenated Codes for Channel Interference Cancellation

    Pham Manh LAM  Keattisak SRIPIMANWAT  

     
    PAPER-Communication Theory and Signals

      Vol:
    E86-A No:7
      Page(s):
    1835-1842

    The use of concatenated codes in non-coherent synchronous optical fiber CDMA networks is proposed. The concatenated code sequences are generated using Walsh code sequences and balanced Walsh code sequences, which are selected from Walsh code sequences. The selection of balanced Walsh code sequences is presented and the design of fully programmable electro-optical transmitter and receiver is reported. In the proposed network, sequence-inversion keying of intensity modulated unipolar concatenated code sequences is employed at the transmitter and unipolar-bipolar correlation is implemented at the receiver. The analysis of the system BER performance is presented and it is proved that multiple-access interference is completely eliminated. It is also shown that the BER performance of the proposed system is better than that of non-coherent synchronous optical fiber CDMA system using optical orthogonal codes with double hard-limiters.

  • Wavelength Mismatch Tolerance in Wavelength-Hopping and Time-Spreading Optical CDMA Systems

    Tae-il CHAE  Hark YOO  Seong-sik MIN  Yong-hyub WON  

     
    LETTER-Fiber-Optic Transmission

      Vol:
    E86-B No:6
      Page(s):
    2015-2018

    The autocorrelation peak reduction due to wavelength mismatches between an encoder and a decoder in wavelength hopping-time spreading (WH-TS) two-dimensional optical CDMA systems is analyzed and verified by experiments. The tolerance of the wavelength mismatch is then obtained through the analysis of the system bit error rate (BER) performance. The results show that no significant BER performance is degraded only by the wavelength mismatches less than 0.1 nm which corresponds to 25 percent of the typical fiber Bragg gratings' spectral width.

  • Bidirectional Single-Fiber Multiwavelength Ring Networks

    Keang-Po HO  Shien-Kuei LIAW  Frank F.-K. TONG  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2245-2252

    High-capacity multiwavelength ring networks with bidirectional WDM add/drop multiplexer (WADM) having built-in EDFAs is analyzed and demonstrated. All WDM channels can be added/dropped independently in each direction. The capacity of a bidirectional ring is found to be approximately twice that of an unidirectional ring. An eight-wavelength WADM is demonstrated for a data rate of 10 Gb/s per channel, providing an overall capacity of 80 Gb/s. The performance of the add/drop multiplexer is not degraded by backward backscattering light. The same WADM is also demonstrated to be able to serve as a bidirectional in-line optical amplifier.

  • A 3 V Low Power 156/622/1244 Mbps CMOS Parallel Clock and Data Recovery Circuit for Optical Communications

    Hae-Moon SEO  Chang-Gene WOO  Sang-Won OH  Sung-Wook JUNG  Pyung CHOI  

     
    PAPER-General Fundamentals and Boundaries

      Vol:
    E83-A No:8
      Page(s):
    1720-1727

    This paper presents the implementation of a 3 V low power multi-rate of 156, 622, and 1244 Mbps clock and data recovery circuit (CDR) for optical communications tranceiver using new parallel clock recovery architecture based on dual charge-pump PLL. Designed circuit recovers eight-phase clock signals which are one-eighth frequency of the input signal. While the typical system uses the method that compares the input data with recovered clock, the proposed circuit compares a 1/2-bit delayed input data with the serial data generated by the recovered eight-phase clock signals. The advantage of the circuit is that the implementation is easy, since each sub blocks have one-eighth frequency of the input data signal. Morevover, since the circuit works at one-eighth frequency of the input data, it dissipates less power than conventional CMOS recovery circuit. Simulation results show that this recovery circuit can work with power dissipation of less than 40 mW with a single 3 V supply. All the simulations are based on HYUNDAI 0.65 µm N-Well CMOS double-poly double-metal technology.

  • Optical Communications Technology Roadmap

    Keijiro HIRAHARA  Toshio FUJII  Koji ISHIDA  Satoshi ISHIHARA  

     
    SURVEY PAPER-Technology Roadmap

      Vol:
    E81-C No:8
      Page(s):
    1328-1341

    An optical communications technology roadmap leading up to the second decade of the 21st century has been investigated to provide a future vision of the optoelectronic technology in 15 to 20 years. The process whereby technology may progress toward the realization of the vision is indicated. A transmission rate of 100 Mbps for homes and a rate of 5 Tbps for the backbone network will be required in the first decade of the 21 century. Two technology roadmaps for public and business communications networks are discussed. It is concluded both WDM and TDM technology will be required to realize such an ultra-high capacity transmission. Technical tasks for various optical devices are investigated in detail.

1-20hit(26hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.