Recent years have seen a general resurgence of interest in analog signal processing and computing architectures. In addition, extensive theoretical and experimental literature on chaos and analog chaotic oscillators exists. One peculiarity of these circuits is the ability to generate, despite their structural simplicity, complex spatiotemporal patterns when several of them are brought towards synchronization via coupling mechanisms. While by no means a systematic survey, this paper provides a personal perspective on this area. After briefly covering design aspects and the synchronization phenomena that can arise, a selection of results exemplifying potential applications is presented, including in robot control, distributed sensing, reservoir computing, and data augmentation. Despite their interesting properties, the industrial applications of these circuits remain largely to be realized, seemingly due to a variety of technical and organizational factors including a paucity of design and optimization techniques. Some reflections are given regarding this situation, the potential relevance to discontinuous innovation in analog circuit design of chaotic oscillators taken both individually and as synchronized networks, and the factors holding back the transition to higher levels of technology readiness.
Kundan Lal DAS Munehisa SEKIKAWA Tadashi TSUBONE Naohiko INABA Hideaki OKAZAKI
This paper discusses the synchronization of two identical canard-generating oscillators. First, we investigate a canard explosion generated in a system containing a Bonhoeffer-van der Pol (BVP) oscillator using the actual parameter values obtained experimentally. We find that it is possible to numerically observe a canard explosion using this dynamic oscillator. Second, we analyze the complete and in-phase synchronizations of identical canard-generating coupled oscillators via experimental and numerical methods. However, we experimentally determine that a small decrease in the coupling strength of the system induces the collapse of the complete synchronization and the occurrence of a complex synchronization; this finding could not be explained considering four-dimensional autonomous coupled BVP oscillators in our numerical work. To numerically investigate the experimental results, we construct a model containing coupled BVP oscillators that are subjected to two weak periodic perturbations having the same frequency. Further, we find that this model can efficiently numerically reproduce experimentally observed synchronization.
Zixuan LI Sangyeop LEE Noboru ISHIHARA Hiroyuki ITO
A wireless sensor terminal module of 5cc size (2.5 cm × 2.5 cm × 0.8 cm) that does not require a battery is proposed by integrating three kinds of circuit technologies. (i) a low-power sensor interface: an FM modulation type CMOS sensor interface circuit that can operate with a typical power consumption of 24.5 μW was fabricated by the 0.7-μm CMOS process technology. (ii) power supply to the sensor interface circuit: a wireless power transmission characteristic to a small-sized PCB spiral coil antenna was clarified and applied to the module. (iii) wireless sensing from the module: backscatter communication technology that modulates the signal from the base terminal equipment with sensor information and reflects it, which is used for the low-power sensing operation. The module fabricated includes a rectifier circuit with the PCB spiral coil antenna that receives wireless power transmitted from base terminal equipment by electromagnetic resonance coupling and converts it into DC power and a sensor interface circuit that operates using the power. The interface circuit modulates the received signal with the sensor information and reflects it back to the base terminal. The module could achieve 100 mm communication distance when 0.4 mW power is feeding to the sensor terminal.
A 150 GHz fundamental oscillator employing an inter-stage matching network based on a transmission line is presented in this letter. The proposed oscillator consists of a two-stage common-emitter amplifier loop, whose inter-stage connections are optimized to meet the oscillation condition. The oscillator is designed in a 130-nm SiGe BiCMOS process that offers fT and fMAX of 350 GHz and 450 GHz. According to simulation results, an output power of 3.17 dBm is achieved at 147.6 GHz with phase noise of -115 dBc/Hz at 10 MHz offset and figure-of-merit (FoM) of -180 dBc/Hz.
Previously a method was reported to determine the mathematical representation of the microwave oscillator admittance by using numerical calculation. When analyzing the load characteristics and synchronization phenomena by using this formula, the analysis results meet with the experimental results. This paper describes a method to determine the mathematical representation manually.
In this paper, a circuit based on a field programmable analog array (FPAA) is proposed for three types of chaotic spiking oscillator (CSO). The input/output conversion characteristics of a specific element in the FPAA can be defined by the user. By selecting the proper characteristics, three types of CSO are realized without changing the structure of the circuit itself. Chaotic attractors are observed in a hardware experiment. It is confirmed that the dynamics of the CSOs are consistent with numerical simulations.
Robin KAESBACH Marcel VAN DELDEN Thomas MUSCH
Precision microwave measurement systems require highly stable oscillators with both excellent long-term and short-term stability. Compared to components used in laboratory instruments, dielectric resonator oscillators (DRO) offer low phase noise with greatly reduced mechanical complexity. To further enhance performance, phase-locked loop (PLL) stabilization can be used to eliminate drift and provide precise frequency control. In this work, the design of a low-cost DRO concept is presented and its performance is evaluated through simulations and measurements. An open-loop phase noise of -107.2 dBc/Hz at 10 kHz offset frequency and 12.8 GHz output frequency is demonstrated. Drift and phase noise are reduced by a PLL, so that a very low jitter of under 29.6 fs is achieved over the entire operating bandwidth.
Masaya MIYAHARA Zule XU Takehito ISHII Noritoshi KIMURA
In this paper, we propose a hybrid crystal oscillator which achieves both quick startup and low steady-state power consumption. At startup, a large negative resistance is realized by configuring a Pierce oscillating circuit with a multi-stage inverter amplifier, resulting in high-speed startup. During steady-state oscillation, the oscillator is reconfigured as a class-C complementary Colpitts circuit for low power consumption and low phase noise. Prototype chips were fabricated in 65nm CMOS process technology. With Pierce-type configuration, the measured startup time and startup energy of the oscillator are reduced to 1/11 and 1/5, respectively, compared with the one without Pierce-type configuration. The power consumption during steady oscillation is 30 µW.
Sangyeop LEE Shuhei AMAKAWA Takeshi YOSHIDA Minoru FUJISHIMA
This paper presents a divide-by-9 injection-locked frequency divider (ILFD). It can lock onto about 6-GHz input with a locking range of 3.23GHz (58%). The basic concept of the ILFD is based on employing self-gated multiple inputs into the multiple-stage ring oscillator. A wide lock range is also realized by adapting harmonic-control circuits, which can boost specific harmonics generated by mixing. The ILFD was fabricated using a 55-nm deeply depleted channel (DDC) CMOS process. It occupies an area of 0.0210mm2, and consumes a power of 14.4mW.
This paper develops a design method and theoretical analysis for piecewise nonlinear oscillators that have desired circular limit cycles. Especially, the mathematical proof on existence, uniqueness, and stability of the limit cycle is shown for the piecewise nonlinear oscillator. In addition, the relationship between parameters in the oscillator and rotational directions and periods of the limit cycle trajectories is investigated. Then, some numerical simulations show that the piecewise nonlinear oscillator has a unique and stable limit cycle and the properties on rotational directions and periods hold.
Koichi MAEZAWA Umer FAROOQ Masayuki MORI
A novel displacement sensor was proposed based on a frequency delta-sigma modulator (FDSM) employing a microwave oscillator. To demonstrate basic operation, we fabricated a stylus surface profiler using a cylindrical cavity resonator, where one end of the cavity is replaced by a thin metal diaphragm with a stylus probe tip. Good surface profile was successfully obtained with this device. A 10 nm depth trench was clearly observed together with a 10 µm trench in a single scan without gain control. This result clearly demonstrates an extremely wide dynamic range of the FDSM displacement sensors.
Xinqun LIU Tao LI Yingxiao ZHAO Jinlin PENG
Conventional Nyquist folding receiver (NYFR) uses zero crossing rising (ZCR) voltage times to control the RF sample clock, which is easily affected by noise. Moreover, the analog and digital parts are not synchronized so that the initial phase of the input signal is lost. Furthermore, it is assumed in most literature that the input signal is in a single Nyquist zone (NZ), which is inconsistent with the actual situation. In this paper, we propose an improved architecture denominated as a dual-channel NYFR with adjustable local oscillator (LOS) and an information recovery algorithm. The simulation results demonstrate the validity and viability of the proposed architecture and the corresponding algorithm.
Koichi NARAHARA Koichi MAEZAWA
Series-connection of resonant-tunneling diodes (RTDs) has been considered to be efficient in upgrading the output power when it is introduced to oscillator architecture. This work is for clarifying the same architecture also contributes to increasing oscillation frequency because the device parasitic capacitance is reduced M times for M series-connected RTD oscillator. Although this mechanism is expected to be universal, we restrict the discussion to the recently proposed multiphase oscillator utilizing an RTD oscillator lattice loop. After explaining the operation principle, we evaluate how the oscillation frequency depends on the number of series-connected RTDs through full-wave calculations. In addition, the essential dynamics were validated experimentally in breadboarded multiphase oscillators using Esaki diodes in place of RTDs.
Mamoru UGAJIN Yuya KAKEI Nobuyuki ITOH
Quadrature voltage-controlled oscillators (VCOs) with current-weight-average and voltage-weight-average phase-adjusting architectures are studied. The phase adjusting equalizes the oscillation frequency to the LC-resonant frequency. The merits of the equalization are explained by using Leeson's phase noise equation and the impulse sensitivity function (ISF). Quadrature VCOs with the phase-adjusting architectures are fabricated using 180-nm TSMC CMOS and show low-phase-noise performances compared to a conventional differential VCO. The ISF analysis and small-signal analysis also show that the drawbacks of the current-weight-average phase-adjusting and voltage-weight-average phase-adjusting architectures are current-source noise effect and large additional capacitance, respectively. A voltage-average-adjusting circuit with a source follower at its input alleviates the capacitance increase.
Tomohiro YAMAJI Masayuki SHIRANE Tsuyoshi YAMAMOTO
A Josephson parametric oscillator (JPO) is an interesting system from the viewpoint of quantum optics because it has two stable self-oscillating states and can deterministically generate quantum cat states. A theoretical proposal has been made to operate a network of multiple JPOs as a quantum annealer, which can solve adiabatically combinatorial optimization problems at high speed. Proof-of-concept experiments have been actively conducted for application to quantum computations. This article provides a review of the mechanism of JPOs and their application as a quantum annealer.
In this paper, the random numbers generated by a true random number generator, using the oscillator sampling method, are formulated using a renewal process, and this formulation is used to demonstrate the uniformity of the random numbers and the independence between different bits. Using our results, a lower bound for the speed of random number generation could easily be identified, according to the required statistical quality.
Koichi MAEZAWA Tatsuo ITO Masayuki MORI
A hard-type oscillator is defined as an oscillator having stable fixed points within a stable limit cycle. For resonant tunneling diode (RTD) oscillators, using hard-type configuration has a significant advantage that it can suppress spurious oscillations in a bias line. We have fabricated hard-type oscillators using an InGaAs-based RTD, and demonstrated a proper operation. Furthermore, the oscillating properties have been compared with a soft-type oscillator having a same parameters. It has been demonstrated that the same level of the phase noise can be obtained with a much smaller power consumption of approximately 1/20.
Maodudul HASAN Eisuke NISHIYAMA Ichihiko TOYODA
Herein, a novel self-oscillating active integrated array antenna (AIAA) is proposed for beam switching X-band applications. The proposed AIAA comprises four linearly polarized microstrip antenna elements, a Gunn oscillator, two planar magic-Ts, and two single-pole single-throw (SPST) switches. The in/anti-phase signal combination approach employing planar magic-Ts is adopted to attain bidirectional radiation patterns in the φ =90° plane with a simple structure. The proposed antenna can switch its beam using the SPST switches. The antenna is analyzed through simulations, and a prototype of the antenna is fabricated and tested to validate the concept. The proposed concept is found to be feasible; the prototype has an effective isotropic radiated power of +15.98dBm, radiated power level of +4.28dBm, and cross-polarization suppression of better than 15dB. The measured radiation patterns are in good agreement with the simulation results.
Mitsuhiko IGARASHI Yuuki UCHIDA Yoshio TAKAZAWA Makoto YABUUCHI Yasumasa TSUKAMOTO Koji SHIBUTANI Kazutoshi KOBAYASHI
In this paper, we present an analysis of local variability of bias temperature instability (BTI) by measuring Ring-Oscillators (RO) on various processes and its impact on logic circuit and SRAM. The evaluation results based on measuring ROs of a test elementary group (TEG) fabricated in 7nm Fin Field Effect Transistor (FinFET) process, 16/14nm generation FinFET processes and a 28nm planer process show that the standard deviations of Negative BTI (NBTI) Vth degradation (σ(ΔVthp)) are proportional to the square root of the mean value (µ(ΔVthp)) at any stress time, Vth flavors and various recovery conditions. While the amount of local BTI variation depends on the gate length, width and number of fins, the amount of local BTI variation at the 7nm FinFET process is slightly larger than other processes. Based on these measurement results, we present an analysis result of its impact on logic circuit considering measured Vth dependency on global NBTI in the 7nm FinFET process. We also analyse its impact on SRAM minimum operation voltage (Vmin) of static noise margin (SNM) based on sensitivity analysis and shows non-negligible Vmin degradation caused by local NBTI.
Applications of continuous-time (CT) comparator include relaxation oscillators, pulse width modulators, and so on. CT comparator receives a differential input and outputs a strobe ideally when the differential input crosses zero. Unlike the DT comparators with positive feedback circuit, amplifiers consuming static power must be employed in CT comparators to amplify the input signal. Therefore, minimization of comparator delay under the constraint of power consumption often becomes an issue. This paper analyzes transient behavior of a CT comparator. Using “constant delay approximation”, the comparator delay is derived as a function of input slew rate, number of stages of the preamplifier, and device parameters in each block. This paper also discusses optimum design of the CT comparator. The condition for minimum comparator delay is derived with keeping power consumption constant. The results include that the optimum DC gain of the preamplifier is e∼e3 per stage depending on the element which dominates load capacitance of the preamplifier.