1-4hit |
Yu SHIMIZU Sou KAWABE Hiroya IWASAKI Takayuki SUGIO Kazuhiko SHIMOMURA
We have successfully demonstrated a GaInAs/InP multiple quantum well (MQW)-based wavelength switch composed of the straight arrayed waveguide with linearly varying refractive index distribution by changing the refractive index using thermo-optic effect. Since optical path length differences between waveguides in the array were achieved through refractive index differences that were controlled by SiO2 mask design in selective metal-organic vapor phase epitaxy (MOVPE), wavelength demultiplexing, and the output port switching in each wavelength of light by the refractive index change in the array waveguides through the thermo-optic effect were achieved. We have obtained the wavelength switching and the change of transmission spectra in each output ports.
Jesse DARJA Melvin J. CHAN Shu-Rong WANG Masakazu SUGIYAMA Yoshiaki NAKANO
Monolithically integrated four-channel distributed feedback (DFB) laser array has been fabricated by metal organic vapor phase epitaxy (MOVPE) selective area growth for 1.55 µm coarse-wavelength division multiplexing (CWDM) systems. Wide-stripe MOVPE selective area growth and electron-beam lithography are used to obtain wide CWDM channel spacing of 20 nm. Compared to hybrid integration of discrete lasers, monolithic integration of laser array on a single substrate greatly simplifies device alignment and packaging process.
Xueliang SONG Naoki FUTAKUCHI Daisuke MIYASHITA Foo Cheong YIT Yoshiaki NAKANO
We achieved first dynamic all-optical signal processing with a bandgap-engineered MZI SOA all-optical switch. The wide-gap Selective Area Growth (SAG) technique was used to provide multi-bandgap materials with a single step epitaxy. The maximum photoluminescence (PL) peak shift obtained between the active region and the passive region was 192 nm. The static current switching with the fabricated switch indicated a large carrier induced refractive index change; up to 14 π phase shift was obtained with 60 mA injection in the SOA. The carrier recovery time of the SOA for obtaining a phase shift of π was estimated to be 250-300 ps. A clear eye pattern was obtained in 2.5 Gbps all-optical wavelength conversion. This is the first all-optical wavelength conversion demonstration with a bandgap-engineered PIC with either selective area growth or quantum-well intermixing techniques.
Yukio KATOH Koji YAMADA Tatsuo KUNII Yoh OGAWA
A wavelength tunable DBR laser monolithically integrated with an EA-modulator as a WDM system light source was fabricated by selective area MOVPE growth. The lasing wavelength and band-gap energy were simultaneously controlled on the same epitaxial wafer by using a modulated grown thickness of InGaAsP/InGaAsP MQW layers. A wavelength tuning range of 3.5 nm, an output power of 3 mW, and an extinction ratio of 14 dB for 3 V were achieved. The measured 3 dB frequency bandwidth was 2 GHz. No significant change in modulation characteristics were observed when wavelength tuning by injecting the current into the DBR.