1-8hit |
Ayano NAKAI-KASAI Kazunori HAYASHI
Diffusion least-mean-square (LMS) is a method to estimate and track an unknown parameter at multiple nodes in a network. When the unknown vector has sparsity, the sparse promoting version of diffusion LMS, which utilizes a sparse regularization term in the cost function, is known to show better convergence performance than that of the original diffusion LMS. This paper proposes a novel choice of the coefficients involved in the updates of sparse diffusion LMS using the idea of message propagation. Moreover, we optimize the proposed coefficients with respect to mean-square-deviation at the steady-state. Simulation results demonstrate that the proposed method outperforms conventional methods in terms of the convergence performance.
Zeyun ZHANG Xiaohuan WU Chunguo LI Wei-Ping ZHU
Direction of arrival (DOA) estimation as a fundamental issue in array signal processing has been extensively studied for many applications in military and civilian fields. Many DOA estimation algorithms have been developed for different application scenarios such as low signal-to-noise ratio (SNR), limited snapshots, etc. However, there are still some practical problems that make DOA estimation very difficult. One of them is the correlation between sources. In this paper, we develop a sparsity-based method to estimate the DOA of coherent signals with sparse linear array (SLA). We adopt the off-grid signal model and solve the DOA estimation problem in the sparse Bayesian learning (SBL) framework. By considering the SLA as a ‘missing sensor’ ULA, our proposed method treats the output of the SLA as a partial output of the corresponding virtual uniform linear array (ULA) to make full use of the expanded aperture character of the SLA. Then we employ the expectation-maximization (EM) method to update the hyper-parameters and the output of the virtual ULA in an iterative manner. Numerical results demonstrate that the proposed method has a better performance in correlated signal scenarios than the reference methods in comparison, confirming the advantage of exploiting the extended aperture feature of the SLA.
Yukihiro BANDOH Yuichi SAYAMA Seishi TAKAMURA Atsushi SHIMIZU
It is essential to improve intra prediction performance to raise the efficiency of video coding. In video coding standards such as H.265/HEVC, intra prediction is seen as an extension of directional prediction schemes, examples include refinement of directions, planar extension, filtering reference sampling, and so on. From the view point of reducing prediction error, some improvements on intra prediction for standardized schemes have been suggested. However, on the assumption that the correlation between neighboring pixels are static, these conventional methods use pre-defined predictors regardless of the image being encoded. Therefore, these conventional methods cannot reduce prediction error if the images break the assumption made in prediction design. On the other hand, adaptive predictors that change the image being encoded may offer poor coding efficiency due to the overhead of the additional information needed for adaptivity. This paper proposes an adaptive intra prediction scheme that resolves the trade-off between prediction error and adaptivity overhead. The proposed scheme is formulated as a constrained optimization problem that minimizes prediction error under sparsity constraints on the prediction coefficients. In order to solve this problem, a novel solver is introduced as an extension of LARS for multi-class support. Experiments show that the proposed scheme can reduce the amount of encoded bits by 1.21% to 3.24% on average compared to HM16.7.
In this paper we extend hyperparameter-free sparse signal reconstruction approaches to permit the high-resolution time delay estimation of spread spectrum signals and demonstrate their feasibility in terms of both performance and computation complexity by applying them to the ISO/IEC 24730-2.1 real-time locating system (RTLS). Numerical examples show that the sparse asymptotic minimum variance (SAMV) approach outperforms other sparse algorithms and multiple signal classification (MUSIC) regardless of the signal correlation, especially in the case where the incoming signals are closely spaced within a Rayleigh resolution limit. The performance difference among the hyperparameter-free approaches decreases significantly as the signals become more widely separated. SAMV is sometimes strongly influenced by the noise correlation, but the degrading effect of the correlated noise can be mitigated through the noise-whitening process. The computation complexity of SAMV can be feasible for practical system use by setting the power update threshold and the grid size properly, and/or via parallel implementations.
Rajesh RAMANATHAN Partha Sharathi MALLICK Thiruvengadam SUNDARAJAN JAYARAMAN
In this letter, we propose a generalized quadrature spatial modulation technique (GQSM) which offers additional bits per channel use (bpcu) gains and a low complexity greedy detector algorithm, structured orthogonal matching pursuit (S-OMP)- GQSM, based on compressive sensing (CS) framework. Simulation results show that the bit error rate (BER) performance of the proposed greedy detector is very close to maximum likelihood (ML) and near optimal detectors based on convex programming.
Akira HIRABAYASHI Norihito INAMURO Aiko NISHIYAMA Kazushi MIMURA
We propose a novel algorithm for the recovery of non-sparse, but compressible signals from linear undersampled measurements. The algorithm proposed in this paper consists of two steps. The first step recovers the signal by the l1-norm minimization. Then, the second step decomposes the l1 reconstruction into major and minor components. By using the major components, measurements for the minor components of the target signal are estimated. The minor components are further estimated using the estimated measurements exploiting a maximum a posterior (MAP) estimation, which leads to a ridge regression with the regularization parameter determined using the error bound for the estimated measurements. After a slight modification to the major components, the final estimate is obtained by combining the two estimates. Computational cost of the proposed algorithm is mostly the same as the l1-nom minimization. Simulation results for one-dimensional computer generated signals show that the proposed algorithm gives 11.8% better results on average than the l1-norm minimization and the lasso estimator. Simulations using standard images also show that the proposed algorithm outperforms those conventional methods.
Tsubasa TERADA Toshihiko NISHIMURA Yasutaka OGAWA Takeo OHGANE Hiroyoshi YAMADA
Much attention has recently been paid to direction of arrival (DOA) estimation using compressed sensing (CS) techniques, which are sparse signal reconstruction methods. In our previous study, we developed a method for estimating the DOAs of multi-band signals that uses CS processing and that is based on the assumption that incident signals have the same complex amplitudes in all the bands. That method has a higher probability of correct estimation than a single-band DOA estimation method using CS. In this paper, we propose novel DOA estimation methods for multi-band signals with frequency characteristics using the Khatri-Rao product. First, we formulate a method that can estimate DOAs of multi-band signals whose phases alone have frequency dependence. Second, we extend the scheme in such a way that we can estimate DOAs of multi-band signals whose amplitudes and phases both depend on frequency. Finally, we evaluate the performance of the proposed methods through computer simulations and reveal the improvement in estimation performance.
Kazunori HAYASHI Masaaki NAGAHARA Toshiyuki TANAKA
This survey provides a brief introduction to compressed sensing as well as several major algorithms to solve it and its various applications to communications systems. We firstly review linear simultaneous equations as ill-posed inverse problems, since the idea of compressed sensing could be best understood in the context of the linear equations. Then, we consider the problem of compressed sensing as an underdetermined linear system with a prior information that the true solution is sparse, and explain the sparse signal recovery based on