IEICE TRANSACTIONS on Electronics

  • Impact Factor

    0.63

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.3

Advance publication (published online immediately after acceptance)

Volume E95-C No.2  (Publication Date:2012/02/01)

    Special Section on Photonic Devices using Nanofabrication Technology and Their Applications
  • FOREWORD Open Access

    Masayuki IZUTSU  

     
    FOREWORD

      Page(s):
    177-177
  • Nanophotonics Based on Semiconductor-Photonic Crystal/Quantum Dot and Metal-/Semiconductor-Plasmonics Open Access

    Kiyoshi ASAKAWA  Yoshimasa SUGIMOTO  Naoki IKEDA  Daiju TSUYA  Yasuo KOIDE  Yoshinori WATANABE  Nobuhiko OZAKI  Shunsuke OHKOUCHI  Tsuyoshi NOMURA  Daisuke INOUE  Takayuki MATSUI  Atsushi MIURA  Hisayoshi FUJIKAWA  Kazuo SATO  

     
    INVITED PAPER

      Page(s):
    178-187

    This paper reviews our recent activities on nanophotonics based on a photonic crystal (PC)/quantum dot (QD)-combined structure for an all-optical device and a metal/semiconductor composite structure using surface plasmon (SP) and negative refractive index material (NIM). The former structure contributes to an ultrafast signal processing component by virtue of new PC design and QD selective-area-growth technologies, while the latter provides a new RGB color filter with a high precision and optical beam-steering device with a wide steering angle.

  • Photonic Crystal Nanolaser Biosensors Open Access

    Shota KITA  Shota OTSUKA  Shoji HACHUDA  Tatsuro ENDO  Yasunori IMAI  Yoshiaki NISHIJIMA  Hiroaki MISAWA  Toshihiko BABA  

     
    INVITED PAPER

      Page(s):
    188-198

    High-performance and low-cost sensors are critical devices for high-throughput analyses of bio-samples in medical diagnoses and life sciences. In this paper, we demonstrate photonic crystal nanolaser sensor, which detects the adsorption of biomolecules from the lasing wavelength shift. It is a promising device, which balances a high sensitivity, high resolution, small size, easy integration, simple setup and low cost. In particular with a nanoslot structure, it achieves a super-sensitivity in protein sensing whose detection limit is three orders of magnitude lower than that of standard surface-plasmon-resonance sensors. Our investigations indicate that the nanoslot acts as a protein condenser powered by the optical gradient force, which arises from the strong localization of laser mode in the nanoslot.

  • Integration of Silicon Nano-Photonic Devices for Telecommunications Open Access

    Seiichi ITABASHI  Hidetaka NISHI  Tai TSUCHIZAWA  Toshifumi WATANABE  Hiroyuki SHINOJIMA  Rai KOU  Koji YAMADA  

     
    INVITED PAPER

      Page(s):
    199-205

    Monolithic integration of various kinds of optical components on a silicon wafer is the key to making silicon (Si) photonics practical technology. Applying silicon photonics to telecommunications further requires low insertion loss and polarization independence. We propose an integration concept for telecommunications based on Si and related materials and demonstrate monolithic integration of passive and dynamic functional components. This article shows the great potential of Si photonics technology for telecommunications.

  • Enhancement of Light Emission from Silicon by Utilizing Photonic Nanostructures Open Access

    Satoshi IWAMOTO  Yasuhiko ARAKAWA  

     
    INVITED PAPER

      Page(s):
    206-212

    Efficient silicon-based light sources are expected to be key devices for applications such as optical interconnection. Huge number of researches has been conducted for realizing silicon-based light sources. Most of them utilized silicon-related materials such as silicon nanostructures or germanium, not crystalline silicon, which has been considered as a poor light emitter because of its indirect electronic bandgap. Light emission properties of materials can be tailored not only by modifying the material properties directly, but also by controlling the electromagnetic environment surrounding the material. Photonic nanostructures are a powerful tool for creating the engineered environment. In this paper, we briefly review the mechanisms for improving the light emission properties of materials by photonic nanostructures and present our recent experimental results showing the enhancement of light emission from silicon by introducing photonic crystal structures.

  • Design and Simulation of InP 1N Planar Optical Switch Based on Beam Deflection

    Sooheuk CHE  Masaru ZAITSU  Akio HIGO  Yoshiaki NAKANO  

     
    PAPER

      Page(s):
    213-217

    We propose a novel 13 planar optical switch using aspheric lenses and carrier-induced tunable prisms on InP. An input light beam is collimated by the aspheric lenses in a slab waveguide. The tunable prism, whose refractive indices are tuned by the carrier plasma effect, deflect the collimated light beam and guide it to the output ports. The switching operations of the 13 optical switch that consists of five lenses and eight prisms with a footprint of 5003500 µm are performed by three-dimensional beam propagation methods. A static switching operation with a 5-dB insertion loss and a 13-dB extinction ratio is obtained with 70-mA current injection for each prism. This device has a simple structure and low power consumption and may be useful for optical packet switching systems.

  • All-Optical Flip-Flop Based on Coupled-Mode DBR Laser Diode for Optically Clocked Operation

    Masaru ZAITSU  Akio HIGO  Takuo TANEMURA  Yoshiaki NAKANO  

     
    PAPER

      Page(s):
    218-223

    A novel type of optically clocked all-optical flip-flop based on a coupled-mode distributed Bragg reflector laser diode is proposed. The device operates as a bistable laser, where the two lasing modes at different wavelength are switched all-optically by injecting a clock pulse together with a set/reset signal. We employ an analytical model based on the two-mode coupled rate equations to verify the basic operation of the device numerically. Optically clocked flip-flop operation is obtained with a set/reset power of 0.60 mW and clock power of 1.8 mW. The device features simple structure, small footprint, and synchronized all-optical flip-flop operation, which should be attractive in the future digital photonic integrated circuits.

  • Phase Demodulation of DPSK Signals Using Dual-Bus Coupled Silicon Micro-Ring Resonator

    Rai KOU  Sungbong PARK  Tai TSUCHIZAWA  Hiroshi FUKUDA  Hidetaka NISHI  Hiroyuki SHINOJIMA  Koji YAMADA  

     
    PAPER

      Page(s):
    224-228

    We demonstrate phase demodulation of 10-Gbps DPSK signals using a silicon micro-ring resonator with a radius of 10 µm and with various coupling gaps for light of ∼1550 nm in wavelength. Influence of the Q factors and transmissions of the resonators on the response speed and power balance of the two output ports is discussed. Furthermore, temperature sensitivity on resonance peak was measured and we discuss its effect on practical demodulation application.

  • Athermal Wavelength Filters toward Optical Interconnection to LSIs

    Yuki ATSUMI  Manabu ODA  Joonhyun KANG  Nobuhiko NISHIYAMA  Shigehisa ARAI  

     
    PAPER

      Page(s):
    229-236

    Photonic integrated circuits (PICs) produced by large-scale integration (LSI) on Si platforms have been intensively researched. Since thermal diffusion from the LSI logic layer is a serious obstacle to realizing a Si-based optical integrated circuit, we have proposed and realized athermal wavelength filters using Si slot waveguides embedded with benzocyclobutene (BCB). First, the athermal conditions were theoretically investigated by controlling the waveguide and gap width of the slot waveguides. In order to introduce the calculated waveguide structures to wavelength filters, the propagation losses and bending losses of the Si slot waveguides were evaluated. The propagation losses were measured to be 5.6 and 5.3 dB/cm for slot waveguide widths of 500 and 700 nm, respectively. Finally, athermal wavelength filters, a ring resonator, and a Mach-Zhender interferometer (MZI) with a slot waveguide width of 700 nm were designed and fabricated. Further, a temperature coefficient of -0.9 pm/K for the operating wavelength was achieved with the athermal MZI.

  • Wavelength Trimming of Micro-Machined VCSELs

    Hayato SANO  Norihiko NAKATA  Akihiro MATSUTANI  Fumio KOYAMA  

     
    PAPER

      Page(s):
    237-242

    We demonstrate the wavelength trimming of MEMS VCSELs by etching a cantilever-shaped top mirror using FIB etching. The proposed technique can be used for the post-process precise wavelength allocation of athermal MEMS VCSELs. The modeling and experimental results on 850 nm MEMS VCSELs are presented. The results show a possibility of realizing both red-shift and blue-shift wavelength changes by choosing the etching area of the cantilever.

  • Built-In Microplanar Lens for Light Coupling to Two-Dimensional Photonic Crystal Waveguide

    Naoki IKEDA  Yu TANAKA  Hitoshi KAWASHIMA  Yoshimasa SUGIMOTO  Toshifumi HASAMA  Kiyoshi ASAKAWA  Hiroshi ISHIKAWA  

     
    BRIEF PAPER

      Page(s):
    243-246

    We propose a built-in planar lens for coupling light to a waveguide on a 2-D photonic crystal (PhC) membrane. A 2-D PhC waveguide with the built-in lens has been fabricated with AlGaAs. Improvement in coupling performance is discussed in comparison to waveguides with straight ends as cleaved.

  • Broadband Light Source Based on Four-Color Self-Assembled InAs Quantum Dot Ensembles Monolithically Grown in Selective Areas

    Nobuhiko OZAKI  Koichi TAKEUCHI  Shunsuke OHKOUCHI  Naoki IKEDA  Yoshimasa SUGIMOTO  Kiyoshi ASAKAWA  Richard A. HOGG  

     
    BRIEF PAPER

      Page(s):
    247-250

    We developed advanced techniques for the growth of self-assembled quantum dots (QDs) for fabricating a broadband light source that can be applied to optical coherence tomography (OCT). Four QD ensembles and strain reducing layers (SRLs) were grown in selective areas on a wafer by the use of a 90° rotational metal mask. The SRL thickness was varied to achieve appropriate shifts in the peak wavelength of the QD emission spectrum of up to 120 nm. The four-color QD ensembles were expected to have a broad bandwidth of more than 160 nm due to the combination of excited state emissions when introduced in a current-induced broadband light source such as a superluminescent diode (SLD). Furthermore, a desired shape of the SLD spectrum can be obtained by controlling the injection current applied to each QD ensemble. The broadband and spectrum shape controlled light source is promising for high-resolution and low-noise OCT systems.

  • Color Filter Based on Surface Plasmon Resonance Utilizing Sub-Micron Periodic Hole Array in Aluminum Thin Film

    Naoki IKEDA  Yoshimasa SUGIMOTO  Masayuki OCHIAI  Daijyu TSUYA  Yasuo KOIDE  Daisuke INOUE  Atsushi MIURA  Tsuyoshi NOMURA  Hisayoshi FUJIKAWA  Kazuo SATO  

     
    BRIEF PAPER

      Page(s):
    251-254

    We investigated optical transmission characteristics of aluminum thin films with periodic hole arrays in sub-wavelength. We divided white light into several color spectra using a color filter based on the surface plasmon resonance (SPR) utilizing aluminum showing high plasma frequency. By optimizing a hole-array period, hole shape, polarization and index difference of two surface, transmittance of 30% and full-width at half-maximum of around 100 nm were achieved.

  • Regular Section
  • Proposal of High Performance 1.55 µm Quantum Dot Heterostructure Laser Using InN

    Md. Mottaleb HOSSAIN  Md. Abdullah-AL HUMAYUN  Md. Tanvir HASAN  Ashraful Ghani BHUIYAN  Akihiro HASHIMOTO  Akio YAMAMOTO  

     
    PAPER-Lasers, Quantum Electronics

      Page(s):
    255-261

    This paper reports on a theoretical study and modeling of a 1.55 µm quantum dot heterostructure laser using InN as a promising candidate for the first time. Details of design and theoretical analysis of probability distribution of the optical transition energy, threshold current density, modal gain, and differential quantum efficiency are presented considering a single layer of quantum dots. Dependence of threshold current density on the RMS value of quantum dot size fluctuations and the cavity length is studied. A low threshold current density of ∼51 Acm-2 is achieved at room temperature for a cavity length of 640 µm. An external differential efficiency of ∼65% and a modal gain of ∼12.5 cm-1 are obtained for the proposed structure. The results indicate that the InN based quantum dot laser is a promising one for the optical communication system.

  • 50-Gb/s NRZ and RZ Modulator Driver ICs Based on Functional Distributed Circuits

    Yasuyuki SUZUKI  Masayuki MAMADA  

     
    PAPER-Microwaves, Millimeter-Waves

      Page(s):
    262-267

    We have developed two modulator driver ICs that are based on the functional distributed circuit (FDC) topology for over 40-Gb/s optical transmission systems using InP HBT technology. The FDC topology enables both a wide bandwidth amplifier and high-speed digital functions. The none-return-to-zero (NRZ) driver IC, which is integrated with a D-type flip-flop, exhibits 2.6-Vp-p (differential output: 5.2 Vp-p) output-voltage swings with a high signal quality at 43 and 50 Gb/s. The return-to-zero (RZ) driver IC, which is integrated with a NRZ to RZ converter, produces 2.4-Vp-p (differential output: 4.8 Vp-p) output-voltage swings and excellent eye openings at 43 and 50 Gb/s. Furthermore, we conducted electro-optical modulation experiments using the developed modulator driver ICs and a dual drive LiNbO3 Mach-Zehnder modulator. We were able to obtain NRZ and RZ clear optical eye openings with low jitters and sufficient extinction ratios of more than 12 dB, at 43 and 50 Gb/s. These results indicate that the FDC has the potential to achieve a large output voltage and create high-speed functional ICs for over-40-Gb/s transmission systems.

  • Ultra-Wideband Bandpass Filter with Sharp Attenuation Slope Using Inter-Digital Finger Resonator and Parallel-Coupled Lines

    Takenori YASUZUMI  Yusuke OMOTE  Tomoki UWANO  Osamu HASHIMOTO  

     
    PAPER-Electronic Circuits

      Page(s):
    268-274

    This paper presents an ultra-wideband (UWB) bandpass filter (BPF) with sharp attenuation slope characteristics. The circuit structure consists of an inter-digital finger resonator, parallel-coupled lines and phase matching line. The design of the bandwidth was described by using the even and odd mode characteristic impedances in the resonator structure. The parallel-coupled lines were also designed in the same manner. The parameters of the resonator and two parallel-coupled lines in combination as the BPF were then optimized by the simulation with HFSS. The designed BPF was experimentally fabricated and its measured performances showed the bandwidth from 3.6 to 10 GHz with the 20 dB outband rejection. For the U.S. UWB band design, the matching line was inserted between the two parallel-coupled lines. The matching at both band edges was then qualitatively analyzed on the smithchart. The HFSS simulation results of the structure realized the bandwidth from 3.1 to 10.6 GHz with sharp attenuation slope characteristics for SWR < 2.0. The measurement results agree well with the simulation results.

  • CMOS Differential Circuits Using Charge-Redistribution and Reduced-Swing Schemes

    Hong-Yi HUANG  Shiun-Dian JAN  Yang CHOU  Cheng-Yu CHEN  

     
    PAPER-Electronic Circuits

      Page(s):
    275-283

    The charge-redistribution low-swing differential logic (CLDL) circuits are presented in this work. It can implement a complex function in a single gate. The CLDL circuits utilizes the charge-redistribution and reduced-swing schemes to reduce the power dissipation and enhance the operation speed. In addition, a pipeline structure is formed by a series connection structure controlled by a true-single-phase clock, thereby achieving high-speed operation. The CLDL circuits perform more than 25% speedup and 31% in power-delay product compared to other differential circuits with true-single-phase clock. A pipelined multiplier-accumulator (MAC) using CLDL structure is fabricated in 0.35 µm single-poly four-metal CMOS process. The test chip is successfully verified to operate at 900-MHz.

  • Design of a New Low-Pass Filter in the Hairpin Structure with a Chip-Capacitor

    Takenori YASUZUMI  Masayoshi KAMADA  Tomoki UWANO  Osamu HASHIMOTO  

     
    PAPER-Electronic Circuits

      Page(s):
    284-289

    A compact and wide stopband low-pass filter (LPF) which consists of a hairpin structural resonator, a chip-capacitor, and inductor lines is proposed in this paper. With the capacitor loaded, the hairpin structure realized three transmission zeros in the stopband. The LPF with one hairpin unit was designed using the conventional prototype design procedure in the passband. To further improve the stopband characteristics, the LPF with three hairpin units was studied and designed with the same manner as in a one unit LPF. The finally designed three-hairpin LPF showed mostly 60 dB rejection characteristics in the conjunction with defected ground condition for avoiding the spurious response at the stopband. The measurement results agreed well with simulated ones.

  • Two-Stage Band-Selectable CMOS Power Amplifiers Using Inter-Stage Frequency Tuning

    JeeYoung HONG  Daisuke IMANISHI  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER-Electronic Circuits

      Page(s):
    290-296

    This paper presents two CMOS power amplifiers which realize frequency band selection. Each PA consists of two stages and uses a transformer to obtain large output power with high efficiency. Furthermore, the capacitive cross-coupling at the second stage reduces a die area of the bypass capacitance. The proposed PAs are fabricated by a 0.18 µm CMOS process. With a 3.3 V supply, the PAs achieve a output 1-dB compression point of larger than 25 dBm from 2.2 GHz to 5.4 GHz, maximum of peak power added efficiency (PAEpeak) are 30% and 27% for 2-band and 3-band PAs, respectively. The proposed PAs have advantages which are a band-selectable ability within a desired frequency range and a realization of CMOS PA with high power efficiency.

  • Low Pass Filter-Less Pulse Width Controlled PLL Using Time to Soft Thermometer Code Converter Open Access

    Toru NAKURA  Kunihiro ASADA  

     
    PAPER-Integrated Electronics

      Page(s):
    297-302

    This paper demonstrates a pulse width controlled PLL without using an LPF. A pulse width controlled oscillator accepts the PFD output where its pulse width controls the oscillation frequency. In the pulse width controlled oscillator, the input pulse width is converted into soft thermometer code through a time to soft thermometer code converter and the code controls the ring oscillator frequency. By using this scheme, our PLL realizes LPF-less as well as quantization noise free operation. The prototype chip achieves 60 µm 20 µm layout area using 65 nm CMOS technology along with 1.73 ps rms jitter while consuming 2.81 mW under a 1.2 V supply with 3.125 GHz output frequency.

  • A Cost-Effective Energy-Recovering Sustain Driving Circuit for ac Plasma Display Panels

    Jae Kwang LIM  Heung-Sik TAE  Byungcho CHOI  Seok Gi KIM  

     
    PAPER-Electronic Displays

      Page(s):
    303-308

    A new sustain driving circuit, featuring an energy-recovering function with simple structure and minimal component count, is proposed as a cost-effective solution for driving plasma display panels during the sustaining period. Compared with existing solutions, the proposed circuit reduces the number of semiconductor switches and reactive circuit components without compromising the circuit performance and gas-discharging characteristics. In addition, the proposed circuit utilizes the harness wire as an inductive circuit component, thereby further simplifying the circuit structure. The performance of the proposed circuit is confirmed with a 42-inch plasma display panel.

  • A Mur Type Analytical Absorbing Boundary Condition for Multidimensional Wave Analysis with the Directional Splitting Technique

    Kensuke SASAKI  Yukihisa SUZUKI  

     
    BRIEF PAPER-Electromagnetic Theory

      Page(s):
    309-312

    A Mur type analytical absorbing boundary condition (A-ABC), which is based on the one-dimensional one-way wave equation, is proposed for multidimensional wave analysis by introducing the directional splitting technique. This new absorbing boundary condition is expansion of the first-order Mur. The absorbing ability, required memory, and calculation speed of the Mur type A-ABC are evaluated by comparison with those of conventional ABCs. The result indicated that absorbing ability of the proposed ABC is higher than the first-order Mur and lower than the second-order Mur at large incident angle. While, our proposed ABC has advantage in both required memory and calculation speed by comparison with the second-order Mur. Thus, effectivity of the proposed Mur type A-ABC is shown.

  • Novel Compact High-Pass Filter with Sharp Attenuation Slope Using Cross-Coupling in the Multi-Layer Structure

    Takenori YASUZUMI  Tomoki UWANO  Osamu HASHIMOTO  

     
    BRIEF PAPER-Electronic Circuits

      Page(s):
    313-316

    A planar high-pass filter (HPF) by using cross-couplings in multi-layer structure is proposed in this paper. The HPF consists of parallel plate and gap type capacitors and inductor lines on the bottom conductor. The one block of the HPF has a ladder T-section in the bridge T configuration. The one block HPF is, thus, coarsely designed in the manner of the proto-type HPF and the performance is optimized by circuit simulator. With the gap capacitor adjusted the proposed HPF illustrates the steep slope characteristics near the cut-off frequency by the attenuation pole. In order to improve the stopband performance, the cascaded two block HPF is examined. Its measured results show the good agreement with the simulated ones giving the second attenuation pole by an inductive cross-coupling.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.