IEICE TRANSACTIONS on Electronics

  • Impact Factor

    0.63

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.3

Advance publication (published online immediately after acceptance)

Volume E97-C No.1  (Publication Date:2014/01/01)

    Special Section on Recent Progress in Electromagnetic Theory and Its Application
  • FOREWORD Open Access

    Masahiko NISHIMOTO  Hiroshi SHIRAI  

     
    FOREWORD

      Page(s):
    1-2
  • Ideas, Inspirations and Hints Those I Met in the Research of Electromagnetic Theory Open Access

    Kazuo TANAKA  

     
    INVITED PAPER

      Page(s):
    3-10

    “How to get the original ideas” is the fundamental and critical issue for the researchers in science and technology. In this paper, the author writes his experiences concerning how he could encounter the interesting and original ideas of three research subjects, i.e., the accelerating medium effect, the guided-mode extracted integral equation and the surface plasmon gap waveguide.

  • Second-Order Perturbative Analysis with Approximated Integration for Propagation Mode in Two-Dimensional Two-Slab Waveguides

    Naofumi KITSUNEZAKI  

     
    PAPER-Optical Waveguide Analysis

      Page(s):
    11-16

    We calculated propagation constants of supermodes for two-dimensional two-slab waveguides, with small core gap, using second-order perturbation expansion from gapless slab waveguide system, and compared our results with the existing works. In the perturbation calculation, we used trapezoidal method to calculate the integral over the transverse direction in space and obtained second-order expansion of (core gap)/(core width) for propagation constants. Our result can explain the qualitative relationship between the propagation constants and the gap distance in the neighbor of (core gap)/(core width) being zero.

  • One-Dimensional Electronic Beam-Scanning Center-Fed Imaging Reflector Antenna

    Michio TAKIKAWA  Izuru NAITO  Kei SUWA  Yoshio INASAWA  Yoshihiko KONISHI  

     
    PAPER-Antenna Technologies

      Page(s):
    17-25

    We propose a new, compact, center-fed reflector antenna that is capable of one-dimensional electronic beam scanning. The reflector profile in the vertical section (beam-scanning) is set to an imaging reflector configuration, while the profile in the orthogonal horizontal section (non-beam-scanning) is set to a Cassegrain antenna configuration. The primary radiator is a one-dimensional phased array antenna. We choose a center-fed configuration in order to reduce the antenna size as much as possible, despite the fact that the increased blocking area from the primary radiator causes degradation in efficiency compared to the typical offset-type configuration. In the proposed configuration, beam scanning is limited to one dimension, but utilize a compact, center-fed configuration that maintains the features of an imaging reflector antenna. We present the antenna configuration and design method and show that results obtained from the prototype antenna verify the predicted performance.

  • CIP Basis Set Method for Electromagnetic Simulation

    Yoshiaki ANDO  Yusuke TAKAHASHI  

     
    PAPER-Numerical Techniques

      Page(s):
    26-32

    This paper presents an application of the constained interpolation profile basis set (CIP-BS) method to electromagnetic fields analyses. Electromagnetic fields can be expanded in terms of multi-dimensional CIP basis functions, and the Galerkin method can then be applied to obtain a system of linear equations. In the present study, we focus on a two-dimensional problem with TMz polarization. In order to examine the precision of the CIP-BS method, TE202 resonant mode in a rectangular cavity is analyzed. The numerical results show that CIP-BS method has better performance than the finite-difference time-domain (FDTD) method when the time step is small. Then an absorbing boundary condition based on the perfectly matched layer (PML) is formulated, and the absorption performance is demonstrated. Finally, the propagation in an inhomogeneous medium is computed by using the proposed method, and it is observed that in the CIP-BS method, smooth variation of material constants is effectively formulated without additional computational costs, and that accurate results are obtained in comparison with the FDTD method even if the permittivity is high.

  • Numerical Analysis of Artificial Optical Activities of Planar Chiral Nano-Gratings

    Yasuo OHTERA  

     
    PAPER-Periodic Structures

      Page(s):
    33-39

    We analyzed polarization characteristics of gammadion-shaped planar chiral nano-gratings (PCNGs), using Jones matrix and FDTD simulation. Optical activity (OA) was found to take place at wavelengths where long-lifetime modes appeared in the chiral layer. Among two kinds of resonance phenomena that concern the extension of the lifetime, guided-mode resonance and Fabry-Perot resonance, the latter was found to be a key to generate practically-important, broad peaks in the OA spectrum. Through the calculation of dispersion relations of Bloch modes in the chiral layer, we showed that the interference of multiple modes with group velocity dispersion played a critical role in the generation of such long-lifetime modes.

  • Method of Image Green's Function in Grating Theory: Extinction Error Field

    Junichi NAKAYAMA  Yasuhiko TAMURA  

     
    BRIEF PAPER-Periodic Structures

      Page(s):
    40-44

    This paper deals with an integral equation method for analyzing the diffraction of a transverse magnetic (TM) plane wave by a perfectly conductive periodic surface. In the region below the periodic surface, the extinction theorem holds, and the total field vanishes if the field solution is determined exactly. For an approximate solution, the extinction theorem does not hold but an extinction error field appears. By use of an image Green's function, new formulae are given for the extinction error field and the mean square extinction error (MSEE), which may be useful as a validity criterion. Numerical examples are given to demonstrate that the formulae work practically even at a critical angle of incidence.

  • Numerical Analysis of Pulse Responses in the Dispersion Media

    Ryosuke OZAKI  Naoya SUGIZAKI  Tsuneki YAMASAKI  

     
    BRIEF PAPER-Time-Domain Analysis

      Page(s):
    45-49

    In this paper, we propose a method for deciding the parameters to satisfy the experiment values, and also checked the effectiveness of this method based on Kramers-Kronig (K.K.) relation. In our proposed method, we are expressed as matrix the Sellmeier's formula, and are solved the simulatenaous equation until the satisfied the experiment value. Numerical results are given for the influence of pulse responses using the medium constants which can be found by proposed method. Also, numerical technique of pulse responses is employed the fast inversion of Laplace transform (FILT).

  • Regular Section
  • Analysis of Low Grazing Scattering by Dielectric Gratings in Conical Mounting Using Scattering Factors

    Hideaki WAKABAYASHI  Masamitsu ASAI  Keiji MATSUMOTO  Jiro YAMAKITA  

     
    PAPER-Electromagnetic Theory

      Page(s):
    50-57

    In the shadow theory, a new description and a physical mean at a low grazing limit of incidence on gratings in the two dimensional scattering problem have been discussed. In this paper, by applying the shadow theory to the three dimensional problem of multilayered dielectric periodic gratings, we formulate the oblique primary excitation and introduce the scattering factors through our analytical method, by use of the matrix eigenvalues. In terms of the scattering factors, the diffraction efficiencies are defined for propagating and evanescent waves with linearly and circularly polarized incident waves. Numerical examples show that when an incident angle becomes low grazing, only specular reflection occurs with the reflection coefficient -1, regardless of the incident polarization. It is newly found that in a circularly polarized incidence case, the same circularly polarized wave as the incident wave is specularly reflected at a low grazing limit.

  • A High-Efficiency Low-Distortion Cascode Power Amplifier Consisting of Independently Biased InGaP/GaAs HBTs

    Yuki TAKAGI  Yoichiro TAKAYAMA  Ryo ISHIKAWA  Kazuhiko HONJO  

     
    PAPER-Microwaves, Millimeter-Waves

      Page(s):
    58-64

    A microwave power amplifier with independently biased InGaP/GaAs HBTs is proposed, and its superior performance is confirmed. Using harmonic balance simulation, the optimal bias conditions for an amplifier with two independently biased InGaP/GaAs HBTs were investigated with the aim of achieving high-efficiency low-distortion performance. A 1.9-GHz-band cascode power amplifier was designed and fabricated. Power efficiencies and third-order intermodulation distortions (IMD3) for the fabricated amplifier were estimated. The collector bias voltage of the first stage transistor mainly affects power-added efficiency (PAE). The base bias current of the first-stage HBT mainly affects IMD3 characteristics, and that of the second-stage HBT mainly affects PAE. The proposed amplifier shows superior performance when compared to a conventional cascode amplifier. The amplifier achieved a maximum PAE of 68.0% with an output power of 14.8dBm, and IMD3 better than -35dBc with a PAE of 25.1%, for a maximum output power of 10.25dBm at 1.9GHz. A PAE of more than 60% was achieved from 1.87 to 1.98GHz.

  • A CAM-Based Information Detection Hardware System for Fast Image Matching on FPGA

    Duc-Hung LE  Tran-Bao-Thuong CAO  Katsumi INOUE  Cong-Kha PHAM  

     
    PAPER-Electronic Circuits

      Page(s):
    65-76

    In this paper, the authors present a CAM-based Information Detection Hardware System for fast, exact and approximate image matching on 2-D data, using FPGA. The proposed system can be potentially applied to fast image matching with various required search patterns, without using search principles. In designing the system, we take advantage of Content Addressable Memory (CAM) which has parallel multi-match mode capability and has been designed, using dual-port RAM blocks. The system has a simple structure, and does not employ any Central Processor Unit (CPU) or complicated computations.

  • State-Dependence of On-Chip Power Distribution Network Capacitance

    Koh YAMANAGA  Shiho HAGIWARA  Ryo TAKAHASHI  Kazuya MASU  Takashi SATO  

     
    PAPER-Integrated Electronics

      Page(s):
    77-84

    In this paper, the measurement of capacitance variation, of an on-chip power distribution network (PDN) due to the change of internal states of a CMOS logic circuit, is studied. A state-dependent PDN-capacitance model that explains measurement results will be also proposed. The model is composed of capacitance elements related to MOS transistors, signal and power supply wires, and substrate. Reflecting the changes of electrode potentials, the capacitance elements become state-dependent. The capacitive elements are then all connected in parallel between power supply and ground to form the proposed model. By using the proposed model, state-dependence of PDN-capacitances for different logic circuits are studied in detail. The change of PDN-capacitance exceeds 12% of its total capacitance in some cases, which corresponds to 6% shift of anti-resonance frequency. Consideration of the state-dependence is important for modeling the PDN-capacitance.

  • Formation of Soluble Ink Using Nanoparticles of Low Molecular EL Materials

    Naoaki SAKURAI  Hiroyasu KONDO  Shuzi HAYASE  

     
    PAPER-Electronic Displays

      Page(s):
    85-90

    As one of organic electroluminescent (EL) materials, we developed a method of fabricating an ink using low molecular- weight materials with a long emission lifetime for application to the inkjet method. Although the emission lifetime is usually long for low molecular-weight materials, their high manufacturing cost due to the necessity of vapor deposition is a disadvantage. We utilized the low molecular-weight material, tris-(8-hydroxyquinoline) aluminum (Alq3), and investigated its dispersibility in a solvent in which it has low solubility. In addition, we ascertained whether the material could maintain its photoluminescence characteristic under the irradiation of ultraviolet rays by investigating the emission of photoluminescence. Alq3 was crystallized into nanosize crystals, whose surface was then coated with a primary amine by the gas evaporation method. The fabricated ink contained crystals with an average size of 250nm and high dispersibility in tetradecane, in which Alq3 is insoluble. Thus, we made it possible to carry out an inkjet method with low molecular weight EL materials.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.