1-2hit |
Kazuya YAMAMOTO Tetsuya HEIMA Akihiko FURUKAWA Masayoshi ONO Yasushi HASHIZUME Hiroshi KOMURASAKI Hisayasu SATO Naoyuki KATO
This paper describes two kinds of on-chip matched low-noise/driver MMIC amplifiers (LN/D-As) suitable for 2.4-GHz and 5.2-GHz short-range wireless applications. The ICs are fabricated in a 0.18 µm bulk CMOS which has no extra processing steps for enhancing the RF performance. The successful use of the current-reuse topology and interdigitated capacitors (IDCs) enables sufficiently low-noise and high output power operations with low current dissipation despite the chip fabrication in the bulk CMOS leading to large RF substrate and conductor losses. The main measurement results of the two LN/D-As are as follows: a 3.8-dB noise figure (NF) and a 10.1-dB gain under the conditions of 1.8 V and 6 mA, a 3.4-dBm 1-dB gain compressed output power (P1dB) for a 2.4-V voltage supply and a 13-mA operating current for the 2.4-GHz LN/D-A, and a 4.9-dB NF and an 11.1-dB gain with a 1.8 V and 10 mA supply condition, a 2.3-dBm P1dB at 2.4 V and 16 mA for the 5.2-GHz LN/D-A. Both MMICs are suited for low-noise amplifiers and driver amplifiers in 2.4-GHz and 5.2-GHz low-cost, low-power wireless systems such as Bluetooth and hiperLAN.
Hiroshi KOMURASAKI Kazuya YAMAMOTO Hideyuki WAKADA Tetsuya HEIMA Akihiko FURUKAWA Hisayasu SATO Takahiro MIKI Naoyuki KATO Akira HYOGO Keitaro SEKINE
This paper describes 2.4-GHz-band front-end building circuits--a down conversion mixer (DCM), a dual-modulus divide-by-4/5 prescaler, a transmit/receive antenna switch (SW), a power amplifier (PA), and a low noise amplifier (LNA). They are fabricated using a standard bulk 0.18 µm CMOS process with a lower current consumption than bipolar circuits, and can operate at the low supply voltage of 1.8 V. Meshed-shielded pads are adopted for lower receiver circuit noise. Pads shielded by metals become cracked when they are bounded, therefore silicided active areas are used as shields instead of metals to avoid these cracks. The meshed shields achieve lower parasitic pad capacitors without parasitic resistors, and also act as dummy active areas. The proposed DCM has a high IP3 characteristic. The DCM has a cascode FET configuration and LO power is injected into the lower FET. By keeping the drain-source voltage of the upper transistor large, the nonlinearity of the drain-source transconductance is reduced and a low distortion DCM is realized. It achieves a higher input referred IP3 with a higher conversion gain for almost the same current consumption of a conventional single-balanced mixer. The output referred IP3 is higher 5.0 dB than the single-balanced mixer. The proposed dual-modulus prescaler employs a fully-differential technique to achieve stable operation. In order to avoid errors, the fully-differential circuit gives the logic voltage swing margins. In addition, the differential technique also reduces the noise effect from the supply voltage line because of the common-mode signal rejection. The maximum operating frequency is 3.0 GHz, and the one flip-flop power consumption normalized by the maximum operating frequency is 180 µW/GHz.