Author Search Result

[Author] Jun'ichi MATSUNAGA(2hit)

1-2hit
  • New α-Particle Induced Soft Error Mechanism in a Three Dimensional Capacitor Cell

    Yukihito OOWAKI  Keiji MABUCHI  Shigeyoshi WATANABE  Kazunori OHUCHI  Jun'ichi MATSUNAGA  Fujio MASUOKA  

     
    PAPER

      Vol:
    E78-C No:7
      Page(s):
    845-851

    This paper describes the new α-particle induced soft error mechanism, the Minority Carrier Outflow (MCO) effect, which may seriously affect the reliability of the scaled DRAMs with three dimensional capacitors. The MCO chargge increases as the device size miniaturizes because of the three dimensional capacitor effect as below. As the device scales down, the storage node volume decreases which results in the higher minority carrier density in the storage node and larger outflow charge. Also as the device plan view miniaturizes, the stack capacitor height or trench depth does not scales down or even increases to keep the storage node capacitance, therefore the initially generated minority carrier becomes larger. A simple analytical MCO model is introduced to evaluate the MCO effect quantitatively. The model agrees well with the three dimensional device simulation. The MCO model predicts that the life time of the minority carrier in the storage node strongly affects the MCO charge, however, even when the life time is as small as the order of 100 ps, the MCO effect can be the major soft error mechanism.

  • An Ultra Low Voltage SOI CMOS Pass-Gate Logic

    Tsuneaki FUSE  Yukihito OOWAKI  Mamoru TERAUCHI  Shigeyoshi WATANABE  Makoto YOSHIMI  Kazunori OHUCHI  Jun'ichi MATSUNAGA  

     
    PAPER

      Vol:
    E80-C No:3
      Page(s):
    472-477

    An ultra low voltage CMOS pass-gate logic using body-bias controlled SOI MOSFETs has been developed. The logic is composed of gate-body connected SOI pass-gates and a CMOS buffer with the body-bias controlled by the complementary double-rail input. The full-adder using the proposed logic improved the lowest operation voltage by 27%, compared with the SOI CPL (Complementary Pass-Gate Logic). For a 16 16 bit multiplier, the power-delay product achieved 70 pJ (including 50 pF I/O) at 0.5 V power supply, which was more than 1 order of magnitude improvement over the bulk CPL.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.