Author Search Result

[Author] Kenji HOSOGI(3hit)

1-3hit
  • Low Power Dissipation GaAs DCFL 2.5 Gbps 16-bit Multiplexer/Demultiplexer LSIs

    Norio HIGASHISAKA  Masaaki SHIMADA  Akira OHTA  Kenji HOSOGI  Kazuo KUBO  Noriyuki TANINO  

     
    PAPER

      Vol:
    E78-C No:9
      Page(s):
    1195-1202

    In order to establish design and measurement technologies for an LSI that features high speed operation and low power dissipation, GaAs 2.5 Gbps 16 bit MUX/DEMUX LSIs have been successfully developed. DCFL is employed as a basic gate in order to reduce the power dissipation. For the purpose of achieving stable operation against the transistor parameter deviation, a timing design called clock tracking is employed. Moreover, to ensure accurate performance measurement, a new measurement system is introduced. The measurement system consists of an error rate detector (ERD), a pulse pattern generator (PPG) and a high speed tester (HST). The performances tested by the measurement system show the power consumptions of MUX and DEMUX LSIs are 1.35 W and 0.95 W. Input phase margin of DEMUX LSI is 290 degrees at 2.5 Gbps operation. The technologies obtained through development of these MUX/DEMUX LSIs are applicable to other high speed and low power LSIs.

  • GaAs 10 Gb/s 64:1 Multiplexer/Demultiplexer Chip Sets

    Masaaki SHIMADA  Norio HIGASHISAKA  Akira OHTA  Kenji HOSOGI  Kazuo KUBO  Noriyuki TANINO  Tadashi TAKAGI  Fuminobu HIDANI  Osamu ISHIHARA  

     
    PAPER

      Vol:
    E79-C No:4
      Page(s):
    503-511

    GaAs 10 Gb/s 64:1 Multiplexer/Demultiplexer chip sets have been successfully developed. The 64-bit 156 Mb/s parallel data output or input of these chip sets can be directly connected to CMOS LSIs. These chip sets consist of a 10Gb/s 4: 1 MUX IC, a 10 Gb/s 1: 4 DEMUX IC, four 2.5 Gb/s 16: 1 MUX LSIs and four 2.5 Gb/s 1: 16 DEMUX LSIs. This multi-chip construction is adopted for low power dissipation and high yield. The basic circuit employed in the 10 Gb/s4: 1 MUX/DEMUX ICs is an SCFL circuit using 0.4 µm-gate FETs with a power supply of -5.2 V, and that in 2.5 Gb/s 16: 1 MUX/DEMUX LSIs is a DCFL circuit using 0.6 µm-gate FETs with a power supply of -2.0 V. These chip sets have functions for synchronization among these ICs and to enable bit shift to make the system design easier. In the 10 Gb/s 4: 1 MUX IC, a timing adjuster is adopted. This timing adjuster can delay the timing of the most critical path by 50 ps. Even if the delay times are out of order due to fluctuations in process, temperature, power supply voltage and other factors, this timing can be revised and the 4: 1 MUX IC can operate at 10 Gb/s. Furthermore, a 48-pin quad flat package for 10 Gb/s 4: 1 MUX/DEMUX ICs has been newly developed. The measured insertion loss is 1.7 dB (at 10 GHz), and the isolation is less than -20 dB (at 10 GHz). These values are sufficient in practical usage. Measurements of these chip sets show desirable performance at the target 10 Gb/s. The power dissipations of the 64: 1 MUX/DEMUX chip sets are 10.3 W and 8.2 W, respectively. These chip sets is expected to contribute to high speed telecommunication systems.

  • A Study on Reliability and Failure Mechanism of T-Shaped Gate HEMTs

    Takahide ISHIKAWA  Kenji HOSOGI  Masafumi KATSUMATA  Hiroyuki MINAMI  Yasuo MITSUI  

     
    PAPER-Failure Physics and Failure Analysis

      Vol:
    E77-A No:1
      Page(s):
    158-165

    This paper describes the reliability on recess type T-shaped gate HEMTs and their major failure mechanism investigated by accelerated life tests and following failure analysis. In this study, high temperature storage tests with a DC bias condition have been conducted on three different recess depths of 100, 125, and 150 nm. The results have clarified that the shallow recess devices of under 125 nm depth have no degration in minimum noise figure Fmin or gain Ga characteristics, indicating that standard HEMT devices, whose recess depth is chosen to be far under 125 nm, possess a sufficient reliability level. However, the devices with deep recess of 150 nm have shown degradation in both Fmin and Ga. Precise failure analyses including SEM observation and von Mises stress simulation have firstly revealed that the main failure mode in deeply recessed T-shaped gate HEMTs is increase in gate electrode's parasitic resistance Rg, which is caused by separation of "head" and "stem" parts of the T-shaped gate electrode due to thermo-mechanical stress concentration.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.