1-3hit |
Takashi KURAFUJI Yasunobu NAKASE Hidehiro TAKATA Yukinaga IMAMURA Rei AKIYAMA Tadao YAMANAKA Atsushi IWABU Shutarou YASUDA Toshitsugu MIWA Yasuhiro NUNOMURA Niichi ITOH Tetsuya KAGEMOTO Nobuharu YOSHIOKA Takeshi SHIBAGAKI Hiroyuki KONDO Masayuki KOYAMA Takahiko ARAKAWA Shuhei IWADE
We apply a selective-sets resizable cache and a complete hierarchy SRAM for the high-performance and low-power RISC CPU core. The selective-sets resizable cache can change the cache memory size by varying the number of cache sets. It reduces the leakage current by 23% with slight degradation of the worst case operating speed from 213 MHz to 210 MHz. The complete hierarchy SRAM enables the partial swing operation not only in the bit lines, but also in the global signal lines. It reduces the current consumption of the memory by 4.6%, and attains the high-speed access of 1.4 ns in the typical case.
Akira YAMADA Yasuhiro NUNOMURA Hiroaki SUZUKI Hisakazu SATO Niichi ITOH Tetsuya KAGEMOTO Hironobu ITO Takashi KURAFUJI Nobuharu YOSHIOKA Jingo NAKANISHI Hiromi NOTANI Rei AKIYAMA Atsushi IWABU Tadao YAMANAKA Hidehiro TAKATA Takeshi SHIBAGAKI Takahiko ARAKAWA Hiroshi MAKINO Osamu TOMISAWA Shuhei IWADE
A high-speed 32-bit RISC microcontroller has been developed. In order to realize high-speed operation with minimum hardware resource, we have developed new design and analysis methods such as a clock distribution, a bus-line layout, and an IR drop analysis. As a result, high-speed operation of 400 MHz has been achieved with power dissipation of 0.96 W at 1.8 V.
Hidehiro TAKATA Rei AKIYAMA Tadao YAMANAKA Haruyuki OHKUMA Yasue SUETSUGU Toshihiro KANAOKA Satoshi KUMAKI Kazuya ISHIHARA Atsuo HANAMI Tetsuya MATSUMURA Tetsuya WATANABE Yoshihide AJIOKA Yoshio MATSUDA Syuhei IWADE
An on-chip, 64-Mb, embedded, DRAM MPEG-2 encoder LSI with a multimedia processor has been developed. To implement this large-scale and high-speed LSI, we have developed the hierarchical skew control of multi-clocks, with timing verification, in which cross-talk noise is considered, and simple measures taken against the IR drop in the power lines through decoupling capacitors. As a result, the target performance of 263 MHz at 1.5 V has been successfully attained and verified, the cross-talk noise has been considered, and, in addition, it has become possible to restrain the IR drop to 166 mV in the 162 MHz operation block.