1-15hit |
Takefumi HIRAGURI Masakatsu OGAWA Makoto UMEUCHI Tetsu SAKATA
Wireless LAN access is now being offered by small personal terminals in addition to laptops. Since these terminals have very limited battery capacity, wireless LAN interfaces that offer some form of power saving are essential. IEEE802.11. specifies PSM (Power save management); it reduces power consumption by suspending some communications functions. However, since Multicasting and Broadcasting are invariably received by all terminals regardless of PSM, the terminals unnecessarily consume electric power, even if the terminal is not multicast subscriber. This paper clarifies this problem, and proposes a scheme for reducing power consumption. The results of an experiment confirm its excellent performance.
Takeshi ONIZAWA Hiroki SHIBAYAMA Masashi IWABUCHI Akira KISHIDA Makoto UMEUCHI Tetsu SAKATA
This paper describes a simple packet combining scheme with maximum likelihood detection (MLD) for multiple-input multiple-output with orthogonal frequency division multiplexing (MIMO-OFDM) in relay channels to construct reliable wireless links in wireless local area networks (LANs). Our MLD-based approach employs the multiplexed sub-stream signals in different transmit slots. The proposed scheme uses an additional combining process before MLD processing. Moreover, the proposed scheme sets the cyclic shift delay (CSD) operation in the relay terminal. We evaluate the performance of the proposed scheme by the packet error rate (PER) and throughput performance in the decode-and-forward (DF) strategy. First, we show that the proposed scheme offers approximately 4.5dB improvement over the conventional scheme in the received power ratio of the relay terminal to the destination terminal at PER =0.1. Second, the proposed scheme achieves about 1.6 times the throughput of the conventional scheme when the received power ratio of the relay terminal to the destination terminal is 3dB.
Satoru HORI Tomoaki KUMAGAI Tetsu SAKATA Masahiro MORIKURA
This paper proposes a new vector error measurement scheme for orthogonal frequency division multiplexing (OFDM) systems that is used to define transmit modulation accuracy. The transmit modulation accuracy is defined to guarantee inter-operability among wireless terminals. In OFDM systems, the transmit modulation accuracy measured by the conventional vector error measurement scheme can not guarantee inter-operability due to the effect of phase noise. To overcome this problem, the proposed vector error measurement scheme utilizes pilot signals in multiple OFDM symbols to compensate the phase rotation caused by the phase noise. Computer simulation results show that the vector error measured by the proposed scheme uniquely corresponds to the C/N degradation in packet error rate even if phase noise exists in the OFDM signals. This means that the proposed vector error measurement scheme makes it possible to define the transmit modulation accuracy and so guarantee inter-operability among wireless terminals.
Akira KISHIDA Masashi IWABUCHI Toshiyuki SHINTAKU Tetsu SAKATA Takefumi HIRAGURI Kentaro NISHIMORI
The IEEE 802.11 distributed coordinated function (DCF) adopts carrier sense multiple access with collision avoidance (CSMA/CA) as its medium access control (MAC) protocol. CSMA/CA is designed such that the transmission from any one station does not have priority over any other. In a congested environment with many DCF stations, this design makes it difficult to protect channel resources for certain stations such as when products are used for presentation at exhibitions, which should be protected based on priority. On the other hand, The IEEE 802.11 enhanced distributed channel access (EDCA) provides a quality-of-service (QoS) mechanism for DCF. However in EDCA, transmission opportunities are allocated based on not individual stations but on the defined traffic type of applications. This paper proposes a distributed dynamic resource allocation method that enables control of flexible bandwidth allocation to each specific station. The proposed method controls the priority level and can coexist with conventional CSMA/CA. Moreover, the proposed method improves the system throughput. Specifically, under the coexistence environment with DCF stations, the proposed method is able to obtain up to over 300% higher user throughput characteristic compared to the case in which the proposed method is not introduced. In addition, under non-coexistence environment, all the proposed stations achieve 70% higher throughput than DCF stations when the number of stations in a network is 50.
Tomoaki KUMAGAI Tetsu SAKATA Masahiro MORIKURA
This paper proposes a new maximal ratio combining (MRC) frequency diversity automatic-repeat-request (ARQ) scheme suitable for high-speed orthogonal frequency division multiplexing (OFDM) systems that is based on the conventional packet combining ARQ scheme. The proposed scheme regularly changes the previously prepared subcarrier assignment pattern at each retransmission according to the number of retransmissions. This scheme sharply reduces the number of ARQ retransmissions and much improves the throughput performance in slow fading environments by virtue of the frequency diversity effect while it requires no complex adaptive operations. Computer simulation results show that the proposed scheme reduces the required number of retransmissions to about 3 at the accumulative correct packet reception rate (ACPRR) of 0.9.
Yoichi MATSUMOTO Kiyoshi KOBAYASHI Tetsu SAKATA Kazuhiko SEKI Shuji KUBOTA Shuzo KATO
This paper presents a fully digital high speed (60 Mb/s) Quadrature Phase Shift Keying (QPSK)/Offset QPSK (OQPSK) burst demodulator for radio applications, which has been implemented on a 0.5 µm Complementary Metal Oxide Semiconductor (CMOS) master slice Very Large Scale Integrated circuit (VLSI). The developed demodulator VLSI eliminates analog devices such as mixers, phase-shifters and Voltage Controlled Oscillator (VCO) for bit-timing recovery, which are used by conventional high-speed burst demodulators. In addition to the fully digital implementation, the VLSI achieves fast carrier and bit-timing acquisition in burst modes by employing a reverse-modulation carrier recovery scheme with a wave-forming filter for OQPSK operation, and a bit-timing recovery scheme with bit-timing estimation and interpolation using a pulse-shaping filter. Results of performance evaluation assuming application in Time Division Multiple Access (TDMA) systems show that the developed VLSI achieves excellent bit-error-rate and carrier-slipping-rate performance at high speed (60 Mb/s) with short preamble words (less than 100 symbols) in low Eb/No environments.
Takeshi ONIZAWA Takafumi FUJITA Tetsu SAKATA Masahiro MORIKURA Satoru AIKAWA
This paper considers a wireless LAN system operated in a multiple-cell environment with universal frequency reuse. A key technical goal is to increase cell-capacity within a cell. A very high-rate wireless LAN system, maximum data rates of over 100 Mbit/s, is proposed that offers an expanded signal-bandwidth compared to that specified in IEEE802.11a. The system employs OFDM and MC/CDMA signals in packet mode. It falls back from OFDM signals with low subcarrier modulation orders to MC/CDMA signals. A link level performance comparison shows that OFDM has superior performance to MC/CDMA at over 32 Mbit/s. Under 16 Mbit/s, however, MC/CDMA can establish wireless link connections unlike OFDM. Thus the fallback technique, which is triggered by the CIR environment, should select OFDM if the data rate exceeds 32 Mbit/s. It should fallback to MC/CDMA if the rate is less than 16 Mbit/s. We also evaluate the proposed scheme in a multiple-cell environment with universal frequency reuse, where the severe co-channel (other-cell) interference is present. We derive a cell capacity criterion for wireless LAN systems, and show that the proposed scheme offers a 2.2 times larger available transmission distance than the OFDM-only scheme. In addition, it is found that the proposed scheme offers a 1.3 times improvement in cell capacity compared to the MC/CDMA-only scheme, even if all other-cell interference is considered.
Akira KISHIDA Takefumi HIRAGURI Masakatsu OGAWA Kentaro NISHIMORI Naoki HONMA Tetsu SAKATA
This paper proposes an interference avoidance technique that allows wireless device with similar frequency bands to be operated adjacent to each other for compact mobile wireless routers (MWRs). This MWR implements two devices of Wireless LAN (WLAN) and Worldwide Interoperability for Microwave Access (WiMAX). The MWR connects WLAN terminals to the backbone network by using WiMAX-WLAN relay. Generally, different frequency channels are assigned for the wireless systems assign in order not to interfere among multiple systems. However, mutual system interference is generated if the space between each device is very close and if the frequency using each system is adjacent. To suppress this interference, this paper proposes a novel interference avoidance technique that leverages IEEE802.11n Power Save Multi-Poll (PSMP). First, we clarify the conditions that raise the issues of mutual interference by experiment. Simulations are conducted to show that the proposed scheme outperforms the conventional schemes. Finally, the effectiveness of the proposed scheme is shown by the computer simulation.
Satoru HORI Masato MIZOGUCHI Tetsu SAKATA Masahiro MORIKURA
MIMO communication systems have been studied as a way to increase system capacity and to improve spectrum efficiency. This paper proposes a novel branch metric generation method for soft-decision Viterbi decoding in coded OFDM systems employing SDM (OFDM-SDM) systems, one form of MIMO communication, that employ the maximum likelihood decision (MLD) algorithm. In coded OFDM systems, the branch metric for forward error correction (FEC) is normally calculated based on received sub-carrier power level and the constellation point likelihood. This conventional approach fails in OFDM-SDM systems. In the proposed method, branch metric is derived based on the likelihood calculated by MLD algorithm, which improves FEC performance effectively. Then, availability of coded OFDM-SDM to realize wireless LANs with data rate above 100 Mbit/s in a bandwidth of 20 MHz is evaluated in office environments using required CNR calculated by computer simulation. The evaluation indicates that OFDM-SDM has the possibility of realizing 100 Mbit/s in office environments.
To realize better bit error rate performance in fast fading environments, this paper proposes the open loop reverse modulation carrier recovery scheme which employs a new open loop carrier extractor and regenerator instead of using a feed back loop. The proposed scheme realizes stable regenerated carrier signals to achieve low bit error rate not only under additive white Gaussian noise environments but also under fast fading environments. Computer simulations clarify that the proposed scheme always achieves better bit error rates than conventional differential detection or coherent detection with feed back loops under the various fading environments examined.
Takeshi ONIZAWA Masato MIZOGUCHI Tetsu SAKATA Masahiro MORIKURA
The adaptive phase tracking scheme for orthogonal frequency division multiplexing (OFDM) signals can provide superior PER performance in channels with varying phase noise power. It is an effective technique for achieving high-rate and high quality wireless transmission. This paper proposes a new simple adaptive phase tracking scheme for OFDM signals in order to realize high-rate wireless local area networks (LANs). The proposed scheme measures the integrated phase rotation in order to appropriately set the properties of the FIR filter in the phase tracking circuits. This scheme uses the fact that the integrated phase rotation is correlated to the phase noise power. Assuming an RMS delay spread of 100 ns, computer simulations show that the proposed scheme offers superior required Eb/N0 performance (with regard to the phase noise power) compared to the conventional fixed-tap scheme, where the phase noise to signal power ratios are below -18 dB. It also offers excellent PER performance at the packet length of 1000 bytes unlike the conventional schemes, which suffer degraded PER performance.
Kiyoshi KOBAYASHI Tetsu SAKATA Yoichi MATSUMOTO Shuji KUBOTA
This paper presents fully digital high speed (17.6Mb/s) burst modem for Offset Quadrature Phase Shift Keying (OQPSK), which employs novel digital modem VLSICs. The modulator VLSIC directly generates modulated intermediate frequency (IF) signals in a fully digitalized manner. A newly proposed digital reverse-modulation and pre-filtered carrier filter-limiter scheme realizes low power consumption and stable operation in a low Eb/No condition. The demodulator VLSIC also achieves fast bit-timing acquisition in burst mode. Moreover, it supports stable initial burst acquisition by a novel automatic frequency control (AFC) acquisition detector and a digital burst detector. A digital burst automatic gain control (AGC) compensates burst-to-burst level differences without analog circutits. Performance evaluation results show that the new modem achieves satisfactory bit-error-rate performance in severe environments. The developed modem has been employed in a commercial portable earth station for ISDN services and reduces the hardware size to one third that of the conventional one.
Tetsu SAKATA Kazuhiko SEKI Shuji KUBOTA Shuzo KATO
This paper proposes a new fully-digitalized π/4-shift QPSK modulator consisting of a digital pulse shaping filter and a baseband quadrature modulator. By employing a novel digital filter configuration, the required filter memory is reduced to just 6.25% of the conventional one. Moreover, since the proposed baseband modulation scheme does not employ analog mixers or an analog 90 divider, a very accurate, high-stable and compact modulator is realized. It is shown that the proposed scheme achieves excellent low power consumption characteristics and is more suitable for digital LSIC implementation of personal communication terminals than a direct RF modulation scheme and an analog IF modulation scheme.
Akira KISHIDA Masashi IWABUCHI Toshiyuki SHINTAKU Takeshi ONIZAWA Tetsu SAKATA
The IEEE 802.11 distributed coordinated function (DCF) adopts carrier sense multiple access with collision avoidance (CSMA/CA) as its medium access control (MAC) protocol. In a wireless local area network (WLAN) stations (STAs) congested situation, the performance of the WLAN system is significantly degraded due to a collision between the STAs. In this paper, we propose a simple method that decreases the number of frame collisions. After a successful transmission, the proposed method refrains from transmission during certain time which is defined as post-inter-frame space (Post-IFS). This mechanism improves the system performance including the throughput characteristics and access delay by reducing the number of competing STAs. The length of the Post-IFS is a key factor in improving the system performance for the proposed method. If the access point (AP) can estimate the optimal value of the Post-IFS, collision-free operation similar to that in centralized control is performed. Even if the optimal Post-IFS is not estimated, the number of competing STAs and the collision probability are decreased. Computer simulations verify that the proposed method achieves 40% higher system throughput compared to the conventional CSMA/CA for a network with 50 STAs.
Kazuhiko SEKI Tetsu SAKATA Shuzo KATO
This paper proposes a digitalized quadrature modulator for burst-by-burst carrier frequency hopping in TDMA-TDD systems. It employs digital frequency synthesis and a multiplexing modulation scheme to give the frequency offset to the modulated IF signal. Moreover, to reduce the frequency settling time of the RF synthesizer below the guard time duration, a phase and frequency preset (PFP) PLL synthesizer is employed. By employing the digital modulation scheme, the proposed modulator needs only one D/A converter, as a result, the complexity of adjusting the DC offset and amplitude between analog signals of the in-phase and the quadrature phase is eliminated. The performance of the proposed modulator is analyzed theoretically and simulated by computers. Theoretical analyses show that the frequency settling time with 15MHz hopping width in the 1900MHz band is reduced by more than 75% from that of the conventional synthesizer. The settling time is less than 40µs which is shorter than the typical guard time of the burst signal format. The analyses also show that the power consumption of the proposed modulator is lower than that of the conventional modulator employing a full band digital frequency converter. Furthermore, the computer simulation confirms that the power spectra and the constellations of the proposed modulator for the coherent and the π/4-shift QPSK modulation schemes can be successfully generated.