1-4hit |
Hiroyuki MICHINISHI Tokumi YOKOHIRA Takuji OKAMOTO Toshifumi KOBAYASHI Tsutomu HONDO
This paper proposes a new supply current test method for detecting floating gate defects in CMOS ICs. In the method, unusual increase of the supply current caused by defects is promoted by superposing an AC component on the DC power supply. Feasibility of the test is examined by some experiments on four DUTs with an intentionally caused defect. The results showed that our method could detect clearly all the defects, one of which may be detected by neither any functional logic test nor any conventional supply current test.
Hiroyuki MICHINISHI Tokumi YOKOHIRA Takuji OKAMOTO Toshifumi KOBAYASHI Tsutomu HONDO
A method to detect open node defects that cannot be detected by the conventional IDDQ test method has previously been proposed employing a sinusoidal wave superposed on the DC supply voltage. The present paper proposes a strategy to improve the detectability of the test method by means of frequency analysis of the supply current. In this strategy, defects are detected by determining whether secondary harmonics of the sinusoidal wave exist in the supply current. The effectiveness of the method is confirmed by experiments on two CMOS NAND gate packages (SSIs).
Takeshi HAMAMOTO Tadato YAMAGATA Masaaki MIHARA Yasumitsu MURAI Toshifumi KOBAYASHI Hideyuki OZAKI
New circuit techniques were proposed to realize a high-density and high-performance content addressable memory (CAM). A dynamic register which functions as a status flag, and some logic circuits are organically combined and flexibly perform complex search operations, despite the compact layout area. Any kind of logic operations for the search results, that are AND, OR, INVERT, and the combinations of them, can be implemented in every word simultaneously. These circuits are implemented in an experimental 288 kbit dynamic CAM using 0.8 µm CMOS process technology. We consider these techniques to be indispensable for high-density and high-performance dynamic CAM.
Tadato YAMAGATA Masaaki MIHARA Takeshi HAMAMOTO Yasumitsu MURAI Toshifumi KOBAYASHI Michihiro YAMADA Hideyuki OZAKI
This paper describes a bitline control circuit and redundancy technique for high-density dynamic content addressable memories (CAMs). The proposed bitline control circuit can efficiently manage a dynamic CAM cell accompanied by complex operations; that is, a refresh operation, a masked search operation, and partial writing, in addition to normal read/write/search operations. By adding a small supplementary circuit to the bitline control circuit, a circuit scheme with redundancy which prevents disabled column circuits from affecting a match operation can also be obtained. These circuit technologies achieve higher-density dynamic CAMs than conventional static CAMs. These technologies have been successfully applied to a 288-kbit CAM with a typical cycle time of 150 ns.