Author Search Result

[Author] Yu HOU(2hit)

1-2hit
  • A Design of Op-Amp Free SAR-VCO Hybrid ADC with 2nd-Order Noise Shaping in 65nm CMOS Technology

    Yu HOU  Zhijie CHEN  Masaya MIYAHARA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E99-A No:12
      Page(s):
    2473-2482

    This paper proposes a SAR-VCO hybrid 1-1 MASH ADC architecture, where a fully-passive 1st-order noise-shaping SAR ADC is implemented in the first stage to eliminate Op-amp. A VCO-based ADC quantizes the residue of the SAR ADC with one additional order of noise shaping in the second stage. The inter-stage gain error can be suppressed by a foreground calibration technique. The proposed ADC architecture is expected to accomplish 2nd-order noise shaping without Op-amp, which makes both high SNDR and low power possible. A prototype ADC is designed in a 65nm CMOS technology to verify the feasibility of the proposed ADC architecture. The transistor-level simulation results show that 75.7dB SNDR is achieved in 5MHz bandwidth at 60MS/s. The power consumption is 748.9µW under 1.0V supply, which results in a FoM of 14.9fJ/conversion-step.

  • An All-Digital Reconfigurable Time-Domain ADC for Low-Voltage Sensor Interface in 65nm CMOS Technology

    Yu HOU  Takamoto WATANABE  Masaya MIYAHARA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E98-A No:2
      Page(s):
    466-475

    An all-digital time-domain ADC, abbreviated as TAD, is presented in this paper. All-digital structure is intrinsically compatible with the scaling of CMOS technology, and can satisfy the great demand of miniaturized and low-voltage sensor interface. The proposed TAD uses an inverter-based Ring-Delay-Line (RDL) to transform the input signal from voltage domain to time domain. The voltage-modulated time information is then digitized by a composite architecture namely “4-Clock-Edge-Shift Construction” (4CKES). TAD features superior voltage sensitivity and 1st-order noise shaping, which can significantly simplify the power-hungry pre-conditioning circuits. Reconfigurable resolution can be easily achieved by applying different sampling rates. A TAD prototype is fabricated in 65nm CMOS, and consumes a small area of 0.016mm2. It achieves a voltage resolution of 82.7µV/LSB at 10MS/s and 1.96µV/LSB at 200kS/s in a narrow input range of 0.1Vpp, merely under 0.6V supply. The highest SNR of TAD prototype is 61.36dB in 20kHz bandwidth at 10MS/s. This paper also analyzes the nonideal effects of TAD and discusses the potential solutions. As the principal drawback, nonlinearity of TAD can be compensated by the differential-setup and digital calibration.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.