Keyword Search Result

[Keyword] IEEE 802.16e(18hit)

1-18hit
  • Mobile WiMAX Handover for Real-Time Application

    Pongtep POOLNISAI  Thawatchai MAYTEEVARUNYOO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E99-B No:8
      Page(s):
    1910-1918

    This paper presents an improved Mobile WiMAX handover (HO) algorithm for real-time application by using a Link_Going_Down (LGD) trigger technique. Mobile WiMAX is a wireless networking system based on the IEEE 802.16e standard. In order to support phone mobility, a HO scheme of some kind must be adopted, and in this standard hard handover (HHO) is defined as mandatory. Since, the fact that there will be a pause in data transmission during the HO process, delay in communication will occur. Thus, the HO time (>50ms) can degrade system performance when implemented in real-time applications such as Video Streaming or Internet Protocol Television (IPTV). Additionally, the HHO takes approximately 300ms because the HO process doesn't start at the best point. The HHO standard considers only the received signal strength (RSS) to decide initiation. The mobile station velocity is also an important factor in HO initiation that should not be neglected. To deal with the problems of handover delay, this paper proposes a new HO scheme. This scheme adopts the dynamic HO threshold that used LGD technique to define the starting HO process. This technique is based on the RSSD (measured by the Doppler Effect technique), mobile velocities and handover time. Consequently, the HO process starts at the right time and HO time is reduced (<50 ms) and the network resource utilization is enhanced to be more efficient.

  • Joint Symbol Timing and Carrier Frequency Offset Estimation for Mobile-WiMAX

    Yong-An JUNG  Young-Hwan YOU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E95-A No:5
      Page(s):
    986-989

    This letter proposes two efficient schemes for the joint estimation of symbol timing offset (STO) and carrier frequency offset (CFO) in orthogonal frequency division multiplexing (OFDM) based IEEE 802.16e systems. Avoiding the effects of inter symbol interference (ISI) over delay spread by the multipath fading channel is a primary purpose in the letter. To do this, the ISI-corrupted CP is excluded when a correlation function is devised for both schemes, achieving the improved performance. To demonstrate the efficiency of the proposed methods, the performance is compared with the conventional method and is evaluated by the mean square error (MSE), acquisition range of CFO, and complexity comparison.

  • Improved Power Saving Mechanism to Increase Unavailability Interval in IEEE 802.16e Networks

    Kyunghye LEE  Youngsong MUN  

     
    LETTER-Network

      Vol:
    E95-B No:4
      Page(s):
    1414-1418

    To manage limited energy resources efficiently, IEEE 802.16e specifies sleep mode operation. Since there can be no communication between the mobile station (MS) and the serving base station (BS) during the unavailability interval, the MS can power down its physical operation components. We propose an improved power saving mechanism (iPSM) which effectively increases the unavailability interval of Type I and Type II power saving classes (PSCs) activated in an MS. After investigating the number of frames in the unavailability interval of each Type II PSC when used with Type I PSC, the iPSM chooses the Type II PSC that yields the maximum number of frames in the unavailability interval. Performance evaluation confirms that the proposed scheme is very effective.

  • Performance Analysis of Power Saving Class of Type I for Voice Service in Two-Way Communication in IEEE 802.16e

    Eunju HWANG  Kyung Jae KIM  Bong Dae CHOI  

     
    PAPER-Network

      Vol:
    E95-B No:3
      Page(s):
    845-856

    In IEEE 802.16e, power saving is one of the important issues for battery-powered mobile stations (MSs). We present a performance analysis of power saving class (PSC) of type I in IEEE 802.16e standard for voice over Internet protocol (VoIP) service with silence suppression in two-way communication. On-off pattern of a voice user in two-way communication is characterized by the modified Brady model, which includes short silence gaps less than 200 ms and talkspurt periods shorter than 15 ms, and so differs from the Brady model. Our analysis of PSC I follows the standard-based procedure for the deactivation of the sleep mode, where a uplink packet arrival during a mutual silence period wakes up the MS immediately while a downlink packet arrival waits to be served until the next listening window. We derive the delay distribution of the first downlink packet arriving during a mutual silence period, and find the dropping probability of downlink packets since a voice packet drops if it is not transmitted within maximum delay constraint. In addition, we calculate the average power consumption under the modified Brady model. Analysis and simulation results show that the sleep mode operation for the MS with VoIP service yields 3239% reduction in the power consumption of the MS. Finally we obtain the optimal initial/final-sleep windows that yield the minimum average power consumption while satisfying QoS constraints on the packet dropping probability and the maximum delay.

  • Enhanced Power Saving Mechanism for Type I and Type II Power Saving Classes in IEEE 802.16e

    Kyunghye LEE  Youngsong MUN  

     
    LETTER-Network

      Vol:
    E94-B No:9
      Page(s):
    2642-2645

    A mobile station (MS) in an IEEE 802.16e network manages its limited energy using the sleep mode operation. An MS can power down its physical operation components during the unavailability interval of the sleep mode. To reduce energy consumption by increasing the unavailability interval, this paper proposes an enhanced power saving mechanism (ePSM) when both activated Type I and Type II power saving classes (PSCs) exist in an MS. A performance evaluation confirms that ePSM results in the improved performance in terms of the unavailability interval as well as the energy consumption than conventional schemes.

  • Selective Scanning Scheme for Femtocells in IEEE 802.16e Systems

    Shin-Hun KANG  Jinwoo PARK  Jae-Hyun KIM  

     
    LETTER-Network

      Vol:
    E94-B No:8
      Page(s):
    2382-2385

    Femtocell is considered a promising solution for indoor service enhancement in IEEE 802.16e cellular systems. However, the scanning scheme of IEEE 802.16e is not suitable for direct use in scanning femtocells in terms of efficiency and scan duration. In this paper, we propose an efficient scanning scheme for femtocells in IEEE 802.16e systems. The proposed scheme can achieve a lower scanning overhead by reducing the number of femtocells needed to be scanned. Numerical results show that the proposed scanning scheme can reduce the control message overhead and the scan duration.

  • Performance Analysis of Persistent Scheduling for VoIP Services in Mobile WiMAX Systems

    Jaewoo SO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:1
      Page(s):
    175-182

    Broadcasting information to users about new resource assignments generates a substantial mapping overhead. The mapping overhead influences the system throughput and, in particular, seriously affects the performance of voice-over-Internet protocol (VoIP) services. Persistent scheduling was introduced to reduce the mapping overhead. However, up to now no studies have mathematically analyzed the performance of the persistent scheduling. This paper develops analytical and simulation models and evaluates the performance of the persistent scheduling for VoIP services in mobile WiMAX systems.

  • Pilot-Aided Channel Estimation for WiMAX 802.16e Downlink Partial Usage of Subchannel System Using Least Squares Line Fitting

    Phuong Thi Thu PHAM  Tomohisa WADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:6
      Page(s):
    1494-1501

    This paper presents a pilot-aided channel estimation method which is particularly suitable for mobile WiMAX 802.16e Downlink Partial Usage of Subchannel mode. Based on this mode, several commonly used channel estimation methods are studied and the method of least squares line fitting is proposed. As data of users are distributed onto permuted clusters of subcarriers in the transmitted OFDMA symbol, the proposed channel estimation method utilizes these advantages to provide better performance than conventional approaches while offering remarkably low complexity in practical implementation. Simulation results with different ITU-channels for mobile environments show that depending on situations, enhancement of 5 dB or more in term of SNR can be achieved.

  • Delay Analysis and Optimization of Bandwidth Request under Unicast Polling in IEEE 802.16e over Gilbert-Elliot Error Channel

    Eunju HWANG  Kyung Jae KIM  Frank ROIJERS  Bong Dae CHOI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:12
      Page(s):
    3827-3835

    In the centralized polling mode in IEEE 802.16e, a base station (BS) polls mobile stations (MSs) for bandwidth reservation in one of three polling modes; unicast, multicast, or broadcast pollings. In unicast polling, the BS polls each individual MS to allow to transmit a bandwidth request packet. This paper presents an analytical model for the unicast polling of bandwidth request in IEEE 802.16e networks over Gilbert-Elliot error channel. We derive the probability distribution for the delay of bandwidth requests due to wireless transmission errors and find the loss probability of request packets due to finite retransmission attempts. By using the delay distribution and the loss probability, we optimize the number of polling slots within a frame and the maximum retransmission number while satisfying QoS on the total loss probability which combines two losses: packet loss due to the excess of maximum retransmission and delay outage loss due to the maximum tolerable delay bound. In addition, we obtain the utilization of polling slots, which is defined as the ratio of the number of polling slots used for the MS's successful transmission to the total number of polling slots used by the MS over a long run time. Analysis results are shown to well match with simulation results. Numerical results give examples of the optimal number of polling slots within a frame and the optimal maximum retransmission number depending on delay bounds, the number of MSs, and the channel conditions.

  • Performance Analysis of Power Saving Mechanism Employing Both Sleep Mode and Idle Mode in IEEE 802.16e

    Eunju HWANG  Yong Hyun LEE  Kyung Jae KIM  Jung Je SON  Bong Dae CHOI  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E92-B No:9
      Page(s):
    2809-2822

    The IEEE 802.16e standard specifies the sleep mode and the idle mode of a mobile station (MS) for power saving. In this paper, to reduce the energy consumption of the MS, we employ the sleep mode while the MS is on-session, and the idle mode while it is off-session. Under the assumption that the time duration from the end of a session to the arrival of a new downlink session request follows an exponential distribution of the mean and that arrivals of messages during an on-session follow a Poisson process with rate λ, we analyze the awake mode period and the sleep mode period by using the busy period analysis of the M/G/1 queue, and then we derive the total mean length of an on-session which consists of a geometric number of awake mode periods and sleep mode periods. Since the sum of an on-session and an off-session constitutes a cycle, we can express the average power consumption in terms of the mean lengths of an awake mode period, a sleep mode period and an idle mode period. The average power consumption indicates how much the MS can save energy by employing the sleep mode and the idle mode. We also derive the Laplace Stieltjes transform (and the mean) of the queueing delay of messages to examine a tradeoff between the power consumption and the delay of messages. Analytical results, which are shown to be well-matched by simulations, address that our employment of the sleep mode and the idle mode provides a considerable reduction in the energy consumption of the MS.

  • Performance Analysis of the ertPS Algorithm and Enhanced ertPS Algorithm for VoIP Services in IEEE 802.16e Systems

    Bong Joo KIM  Gang Uk HWANG  

     
    PAPER-Network

      Vol:
    E92-B No:6
      Page(s):
    2000-2007

    In this paper, we analyze the extended real-time Polling Service (ertPS) algorithm in IEEE 802.16e systems, which is designed to support Voice-over-Internet-Protocol (VoIP) services with data packets of various sizes and silence suppression. The analysis uses a two-dimensional Markov Chain, where the grant size and the voice packet state are considered, and an approximation formula for the total throughput in the ertPS algorithm is derived. Next, to improve the performance of the ertPS algorithm, we propose an enhanced uplink resource allocation algorithm, called the e 2rtPS algorithm, for VoIP services in IEEE 802.16e systems. The e 2rtPS algorithm considers the queue status information and tries to alleviate the queue congestion as soon as possible by using remaining network resources. Numerical results are provided to show the accuracy of the approximation analysis for the ertPS algorithm and to verify the effectiveness of the e 2rtPS algorithm.

  • An Efficient Power Saving Mechanism for Delay-Guaranteed Services in IEEE 802.16e

    Yunju PARK  Gang Uk HWANG  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E92-B No:1
      Page(s):
    277-287

    As the IEEE 802.16e Wireless Metropolitan Access Network (WMAN) supports the mobility of a mobile station (MS), increasing MS power efficiency has become an important issue. In this paper, we analyze the sleep-mode operation for an efficient power saving mechanism for delay-guaranteed services in the IEEE 802.16e WMAN and observe the effects of the operating parameters related to this operation. For the analysis we use the M/GI/1/K queueing system with multiple vacations, exhaustive services and setup times. In the analysis, we consider the power consumption during the wake-mode period as well as the sleep-mode period. As a performance measure for the power consumption, we propose the power consumption per unit time per effective arrival which considers the power consumption and the packet blocking probability simultaneously. In addition, since we consider delay-guaranteed services, the average packet response delay is also considered as a performance measure. Based on the performance measures, we obtain the optimal sleep-mode operation which minimizes the power consumption per unit time per effective arrival with a given delay requirement. Numerical studies are also provided to investigate the system performance and to show how to achieve our objective.

  • Secure Handover Protocol for Mobile WiMAX Networks

    Song-Hee LEE  Nam-Sup PARK  Jin-Young CHOI  

     
    LETTER-Networks

      Vol:
    E91-D No:12
      Page(s):
    2875-2879

    In this paper, we analyze existing vulnerabilities in handover for mobile WiMAX networks. To overcome these vulnerabilities, we propose a secure handover protocol that guarantees mutual authentication and forward/backward secrecy in handover. We present a formal analysis of our protocol using a logic-based formal method.

  • An Efficient Uplink Scheduling Algorithm with Variable Grant-Interval for VoIP Service in BWA Systems

    Sung-Min OH  Sunghyun CHO  Jae-Hyun KIM  Jonghyung KWUN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:10
      Page(s):
    3379-3382

    This letter proposes an efficient uplink scheduling algorithm for the voice over Internet protocol (VoIP) service with variable frame-duration according to the voice activity in IEEE 802.16e/m systems. The proposed algorithm dynamically changes the grant-interval to save the uplink bandwidth, and it uses the random access scheme when the voice activity changes from silent-period to talk-spurt. Numerical results show that the proposed algorithm can increase the VoIP capacity by 26 percent compared to the conventional extended real-time polling service (ertPS).

  • A Novel Energy Saving Algorithm with Frame Response Delay Constraint in IEEE 802.16e

    Dinh Thi Thuy NGA  MinGon KIM  Minho KANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1190-1193

    Sleep-mode operation of a Mobile Subscriber Station (MSS) in IEEE 802.16e effectively saves energy consumption; however, it induces frame response delay. In this letter, we propose an algorithm to quickly find the optimal value of the final sleep interval in sleep-mode in order to minimize energy consumption with respect to a given frame response delay constraint. The validations of our proposed algorithm through analytical results and simulation results suggest that our algorithm provide a potential guidance to energy saving.

  • Adaptive Power Management Mechanism Considering Remaining Energy in IEEE 802.16e

    Min-Gon KIM  JungYul CHOI  Bokrae JUNG  Minho KANG  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E90-B No:9
      Page(s):
    2621-2624

    This letter proposes a new adaptive power management mechanism (APM2) which takes into account the remaining energy in an IEEE 802.16e system. Benefits of the mechanism are the reduction of frame response delay in a state with sufficient remaining energy, and an increase in the life of a station in a state of insufficient remaining energy. An analytical model for sleep mode operation is developed, and the proposed mechanism is validated by computer simulation.

  • Preamble Boosted Power Based Frame Timing Acquisition Algorithm for Cellular OFDMA Systems

    Seungjae BAHNG  Chang-Wahn YU  Youn-Ok PARK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:12
      Page(s):
    3454-3457

    We propose a simple initial frame timing acquisition algorithm for cellular OFDMA systems. The proposed algorithm utilizes the 9 dB boost in preamble power set by the IEEE 802.16e standard. Simulation results show that the proposed algorithm succeeds in acquiring the starting point of a frame under not only single cell but also multi-cell environments, while the conventional autocorrelation-based method fails under multi-cell environment.

  • Packet Scheduling Algorithms for Throughput Fairness and Coverage Enhancement in TDD-OFDMA Downlink Network

    Young Min KI  Dong Ku KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:11
      Page(s):
    4402-4405

    This paper proposes two different packet schedulers for IEEE 802.16e type time division duplex - orthogonal frequency division multiple access (TDD-OFDMA), which are the weighted fair scheduling (WFS) and the throughput guarantee scheduling (TGS). The performance of proposed schedulers is compared to those of some of conventional schedulers such as round robin (RR), proportional fair (PF), fast fair throughput (FFTH), and fair throughput (FTH) in terms of service coverage, effective throughput and fairness at 64 kbps and 128 kbps minimum user throughput requirements. For a relatively smaller throughput (64 kbps) requirement, the proposed schedulers increase the number of users per sector within 95% service coverage while satisfying the 1xEV-DV fairness criterion. For a relatively larger throughput (128 kbps) requirement, the proposed schedulers provide higher coverage than the PF scheduler while maintaining the same effective aggregate throughput.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.