Yuichiro URATA Masanori KOIKE Kazuhisa YAMAGISHI Noritsugu EGI
In this paper, a metadata-based quality-estimation model is proposed for tile-based omnidirectional video streaming services, aiming to realize quality monitoring during service provision. In the tile-based omnidirectional video (ODV) streaming services, the ODV is divided into tiles, and the high-quality tiles and the low-quality tiles are distributed in accordance with the user's viewing direction. When the user changes the viewing direction, the user temporarily watches video with the low-quality tiles. In addition, the longer the time (delay time) until the high-quality tile for the new viewing direction is downloaded, the longer the viewing time of video with the low-quality tile, and thus the delay time affects quality. From the above, the video quality of the low-quality tiles and the delay time significantly impact quality, and these factors need to be considered in the quality-estimation model. We develop quality-estimation models by extending the conventional quality-estimation models for 2D adaptive streaming. We also show that the quality-estimation model using the bitrate, resolution, and frame rate of high- and low-quality tiles and that the delay time has sufficient estimation accuracy based on the results of subjective quality evaluation experiments.
Xincheng CAO Bin YAO Binqiang CHEN Wangpeng HE Suqin GUO Kun CHEN
Tool condition monitoring is one of the core tasks of intelligent manufacturing in digital workshop. This paper presents an intelligent recognize method of tool condition based on deep learning. First, the industrial microphone is used to collect the acoustic signal during machining; then, a central fractal decomposition algorithm is proposed to extract sensitive information; finally, the multi-scale convolutional recurrent neural network is used for deep feature extraction and pattern recognition. The multi-process milling experiments proved that the proposed method is superior to the existing methods, and the recognition accuracy reached 88%.
Cong ZHOU Jing TAO Baosheng WANG Na ZHAO
As a key technology of 5G, NFV has attracted much attention. In addition, monitoring plays an important role, and can be widely used for virtual network function placement and resource optimisation. The existing monitoring methods focus on the monitoring load without considering they own resources needed. This raises a unique challenge: jointly optimising the NFV monitoring systems and minimising their monitoring load at runtime. The objective is to enhance the gain in real-time monitoring metrics at minimum monitoring costs. In this context, we propose a novel NFV monitoring solution, namely, iMon (Monitoring by inferring), that jointly optimises the monitoring process and reduces resource consumption. We formalise the monitoring process into a multitarget regression problem and propose three regression models. These models are implemented by a deep neural network, and an experimental platform is built to prove their availability and effectiveness. Finally, experiments also show that monitoring resource requirements are reduced, and the monitoring load is just 0.6% of that of the monitoring tool cAdvisor on our dataset.
Khine Yin MON Masanari KONDO Eunjong CHOI Osamu MIZUNO
Defect prediction approaches have been greatly contributing to software quality assurance activities such as code review or unit testing. Just-in-time defect prediction approaches are developed to predict whether a commit is a defect-inducing commit or not. Prior research has shown that commit-level prediction is not enough in terms of effort, and a defective commit may contain both defective and non-defective files. As the defect prediction community is promoting fine-grained granularity prediction approaches, we propose our novel class-level prediction, which is finer-grained than the file-level prediction, based on the files of the commits in this research. We designed our model for Python projects and tested it with ten open-source Python projects. We performed our experiment with two settings: setting with product metrics only and setting with product metrics plus commit information. Our investigation was conducted with three different classifiers and two validation strategies. We found that our model developed by random forest classifier performs the best, and commit information contributes significantly to the product metrics in 10-fold cross-validation. We also created a commit-based file-level prediction for the Python files which do not have the classes. The file-level model also showed a similar condition as the class-level model. However, the results showed a massive deviation in time-series validation for both levels and the challenge of predicting Python classes and files in a realistic scenario.
Xiangyu MENG Yecong LI Zhiyi YU
This paper proposes a design of high-speed interconnection between optical modules and electrical modules via bonding-wires and coplanar waveguide transmission lines on printed circuit boards for 400 Gbps 4-channel optical communication systems. In order to broaden the interconnection bandwidth, interdigitated capacitors were integrated with GSG pads on chip for the first time. Simulation results indicate the reflection coefficient is below -10 dB from DC to 53 GHz and the insertion loss is below 1 dB from DC to 45 GHz. Both indicators show that the proposed interconnection structure can effectively satisfy the communication bandwidth requirements of 100-Gbps or even higher data-rate PAM4 signals.
Kohei WATABE Norinosuke MURAI Shintaro HIRAKAWA Kenji NAKAGAWA
End-to-end loss and delay are both fundamental metrics in network performance evaluation, and accurate measurements for these end-to-end metrics are one of the keys to keeping delay/loss-sensitive applications (e.g., audio/video conferencing, IP telephony, or telesurgery) comfortable on networks. In our previous work [1], we proposed a parallel flow monitoring method that can provide accurate active measurements of end-to-end delay. In this method, delay samples of a target flow increase by utilizing the observation results of other flows sharing the source/destination with the target flow. In this paper, to improve accuracy of loss measurements, we propose a loss measurement method by extending our delay measurement method. Additionally, we improve the loss measurement method so that it enables to fully utilize information of all flows including flows with different source and destination. We evaluate the proposed method through theoretical and simulation analyses. The evaluations show that the accuracy of the proposed method is bounded by theoretical upper/lower bounds, and it is confirmed that it reduces the error of loss rate estimations by 57.5% on average.
Ryu ISHII Kyosuke YAMASHITA Yusuke SAKAI Tadanori TERUYA Takahiro MATSUDA Goichiro HANAOKA Kanta MATSUURA Tsutomu MATSUMOTO
Aggregate signature schemes enable us to aggregate multiple signatures into a single short signature. One of its typical applications is sensor networks, where a large number of users and devices measure their environments, create signatures to ensure the integrity of the measurements, and transmit their signed data. However, if an invalid signature is mixed into aggregation, the aggregate signature becomes invalid, thus if an aggregate signature is invalid, it is necessary to identify the invalid signature. Furthermore, we need to deal with a situation where an invalid sensor generates invalid signatures probabilistically. In this paper, we introduce a model of aggregate signature schemes with interactive tracing functionality that captures such a situation, and define its functional and security requirements and propose aggregate signature schemes that can identify all rogue sensors. More concretely, based on the idea of Dynamic Traitor Tracing, we can trace rogue sensors dynamically and incrementally, and eventually identify all rogue sensors of generating invalid signatures even if the rogue sensors adaptively collude. In addition, the efficiency of our proposed method is also sufficiently practical.
Guowei CHEN Xujiaming CHEN Kiichi NIITSU
This brief presents a slope analog-digital converter (ADC)-based supply voltage monitor (SVM) for biofuel-cell-powered supply-sensing systems operating in a supply voltage range of 0.18-0.35V. The proposed SVM is designed to utilize the output of energy harvester extracting power from biological reactions, realizing energy-autonomous sensor interfaces. A burst pulse generator uses a dynamic leakage suppression logic oscillator to generate a stable clock signal under the sub-threshold region for pulse counting. A slope-based voltage-to-time converter is employed to generate a pulse width proportional to the supply voltage with high linearity. The test chip of the proposed SVM is implemented in 180-nm CMOS technology with an active area of 0.018mm2. It consumes 2.1nW at 0.3V and achieves a conversion time of 117-673ms at 0.18-0.35V with a nonlinearity error of -5.5/+8.3mV, achieving an energy-efficient biosensing frontend.
This brief proposes a solar-cell-assisted wireless biosensing system that operates using a biofuel cell (BFC). To facilitate BFC area reduction for the use of this system in area-constrained continuous glucose monitoring contact lenses, an energy harvester combined with an on-chip solar cell is introduced as a dedicated power source for the transmitter. A dual-oscillator-based supply voltage monitor is employed to convert the BFC output into digital codes. From measurements of the test chip fabricated in 65-nm CMOS technology, the proposed system can achieve 99% BFC area reduction.
The resistor variation can severely affect current reference sources, which may vary up to ±40% in scaled CMOS processes. In addition, such variations make the opamp design challenging and increase the design margin, impacting power consumption. This paper proposes a Time-Based Current Source (TBCS): a robust and process-scalable reference current source suitable for switched-capacitor (SC) circuits. We construct a delay-locked-loop (DLL) to lock the current-starved inverter with the reference clock, enabling the use of the settled current directly as a reference current. Since the load capacitors determine the delay, the generated current is decoupled from resistor values and enables a robust reference current source. The prototype TBCS fabricated in 28nm CMOS achieved a minimal area of 1200um2. The current variation is suppressed to half compared to BGR based current sources, confirmed in extensive PVT variation simulations. Moreover, when used as the opamp's bias, TBCS achieves comparable opamp GBW to an ideal current source.
This letter presents a new framework for synchronous remote online exams. This framework proposes new monitoring of notebooks in remote locations and limited messaging only enabled between students and their instructor during online exams. This framework was evaluated by students as highly effective in minimizing cheating during online exams.
Shohei KAMAMURA Yuhei HAYASHI Yuki MIYOSHI Takeaki NISHIOKA Chiharu MORIOKA Hiroyuki OHNISHI
This paper proposes a fast and scalable traffic monitoring system called Fast xFlow Proxy. For efficiently provisioning and operating networks, xFlow such as IPFIX and NetFlow is a promising technology for visualizing the detailed traffic matrix in a network. However, internet protocol (IP) packets in a large carrier network are encapsulated with various outer headers, e.g., layer 2 tunneling protocol (L2TP) or multi-protocol label switching (MPLS) labels. As native xFlow technologies are applied to the outer header, the desired inner information cannot be visualized. From this motivation, we propose Fast xFlow Proxy, which explores the complicated carrier's packet, extracts inner information properly, and relays the inner information to a general flow collector. Fast xFlow Proxy should be able to handle various packet processing operations possible (e.g., header analysis, header elimination, and statistics) at a wire rate. To realize the processing speed needed, we implement Fast xFlow Proxy using the data plane development kit (DPDK) and field-programmable gate array (FPGA). By optimizing deployment of processes between DPDK and FPGA, Fast xFlow Proxy achieves wire rate processing. From evaluations, we can achieve over 20 Gbps performance by using a single server and 100 Gbps performance by using scale-out architecture. We also show that this performance is sufficiently practical for monitoring a nationwide carrier network.
Wassapon WATANAKEESUNTORN Keichi TAKAHASHI Chawanat NAKASAN Kohei ICHIKAWA Hajimu IIDA
OpenFlow is a widely adopted implementation of the Software-Defined Networking (SDN) architecture. Since conventional network monitoring systems are unable to cope with OpenFlow networks, researchers have developed various monitoring systems tailored for OpenFlow networks. However, these existing systems either rely on a specific controller framework or an API, both of which are not part of the OpenFlow specification, and thus limit their applicability. This article proposes a transparent and low-overhead monitoring system for OpenFlow networks, referred to as Opimon. Opimon monitors the network topology, switch statistics, and flow tables in an OpenFlow network and visualizes the result through a web interface in real-time. Opimon monitors a network by interposing a proxy between the controller and switches and intercepting every OpenFlow message exchanged. This design allows Opimon to be compatible with any OpenFlow switch or controller. We tested the functionalities of Opimon on a virtual network built using Mininet and a large-scale international OpenFlow testbed (PRAGMA-ENT). Furthermore, we measured the performance overhead incurred by Opimon and demonstrated that the overhead in terms of latency and throughput was less than 3% and 5%, respectively.
Tomoyuki FURUICHI Mizuki MOTOYOSHI Suguru KAMEDA Takashi SHIBA Noriharu SUEMATSU
To reduce the complexity of direct radio frequency (RF) undersampling real-time spectrum monitoring in wireless Internet of Things (IoT) bands (920MHz, 2.4GHz, and 5 GHz bands), a design method of sampling frequencies is proposed in this paper. The Direct RF Undersampling receiver architecture enables the use of ADC with sampling clock lower frequency than receiving RF signal, but it needs RF signal identification signal processing from folded spectrums with multiple sampling clock frequencies. The proposed design method allows fewer sampling frequencies to be used than the conventional design method for continuous frequency range (D.C. to 5GHz-band). The proposed method reduced 2 sampling frequencies in wireless IoT bands case compared with the continuous range. The design result using the proposed method is verified by measurement.
Jun SHIBAYAMA Takuma KURODA Junji YAMAUCHI Hisamatsu NAKANO
A periodic array of InSb spheres on a substrate is numerically analyzed at terahertz frequencies. The incident field is shown to be coupled to the substrate due to the guided-mode resonance. The effect of the background refractive index on the transmission characteristics is investigated for sensor applications.
Active network monitoring based on Boolean network tomography is a promising technique to localize link failures instantly in transport networks. However, the required set of monitoring trails must be recomputed after each link failure has occurred to handle succeeding link failures. Existing heuristic methods cannot compute the required monitoring trails in a sufficiently short time when multiple-link failures must be localized in the whole of large-scale managed networks. This paper proposes an approach for computing the required monitoring trails within an allowable expected period specified beforehand. A random walk-based analysis estimates the number of monitoring trails to be computed in the proposed approach. The estimated number of monitoring trails are computed by a lightweight method that only guarantees partial localization within restricted areas. The lightweight method is repeatedly executed until a successful set of monitoring trails achieving unambiguous localization in the entire managed networks can be obtained. This paper demonstrates that the proposed approach can compute a small number of monitoring trails for localizing all independent dual-link failures in managed networks made up of thousands of links within a given expected short period.
Yosuke IIJIMA Keigo TAYA Yasushi YUMINAKA
To meet the increasing demand for high-speed communication in VLSI (very large-scale integration) systems, next-generation high-speed data transmission standards (e.g., IEEE 802.3bs and PCIe 6.0) will adopt four-level pulse amplitude modulation (PAM-4) for data coding. Although PAM-4 is spectrally efficient to mitigate inter-symbol interference caused by bandwidth-limited wired channels, it is more sensitive than conventional non-return-to-zero line coding. To evaluate the received signal quality when using adaptive coefficient settings for a PAM-4 equalizer during data transmission, we propose an eye-opening monitor technique based on machine learning. The proposed technique uses a Gaussian mixture model to classify the received PAM-4 symbols. Simulation and experimental results demonstrate the feasibility of adaptive equalization for PAM-4 coding.
Keiichiro SATO Ryoichi SHINKUMA Takehiro SATO Eiji OKI Takanori IWAI Takeo ONISHI Takahiro NOBUKIYO Dai KANETOMO Kozo SATODA
Predictive spatial-monitoring, which predicts spatial information such as road traffic, has attracted much attention in the context of smart cities. Machine learning enables predictive spatial-monitoring by using a large amount of aggregated sensor data. Since the capacity of mobile networks is strictly limited, serious transmission delays occur when loads of communication traffic are heavy. If some of the data used for predictive spatial-monitoring do not arrive on time, prediction accuracy degrades because the prediction has to be done using only the received data, which implies that data for prediction are ‘delay-sensitive’. A utility-based allocation technique has suggested modeling of temporal characteristics of such delay-sensitive data for prioritized transmission. However, no study has addressed temporal model for prioritized transmission in predictive spatial-monitoring. Therefore, this paper proposes a scheme that enables the creation of a temporal model for predictive spatial-monitoring. The scheme is roughly composed of two steps: the first involves creating training data from original time-series data and a machine learning model that can use the data, while the second step involves modeling a temporal model using feature selection in the learning model. Feature selection enables the estimation of the importance of data in terms of how much the data contribute to prediction accuracy from the machine learning model. This paper considers road-traffic prediction as a scenario and shows that the temporal models created with the proposed scheme can handle real spatial datasets. A numerical study demonstrated how our temporal model works effectively in prioritized transmission for predictive spatial-monitoring in terms of prediction accuracy.
Yuta UKON Shimpei SATO Atsushi TAKAHASHI
Advanced information-processing services such as computer vision require a high-performance digital circuit to perform high-load processing at high speed. To achieve high-speed processing, several image-processing applications use an approximate computing technique to reduce idle time of the circuit. However, it is difficult to design the high-speed image-processing circuit while controlling the error rate so as not to degrade service quality, and this technique is used for only a few applications. In this paper, we propose a method that achieves high-speed processing effectively in which processing time for each task is changed by roughly detecting its completion. Using this method, a high-speed processing circuit with a low error rate can be designed. The error rate is controllable, and a circuit design method to minimize the error rate is also presented in this paper. To confirm the effectiveness of our proposal, a ripple-carry adder (RCA), 2-dimensional discrete cosine transform (2D-DCT) circuit, and histogram of oriented gradients (HOG) feature calculation circuit are evaluated. Effective clock periods of these circuits obtained by our method with around 1% error rate are improved about 64%, 6%, and 12%, respectively, compared with circuits without error. Furthermore, the impact of the miscalculation on a video monitoring service using an object detection application is investigated. As a result, more than 99% of detection points required to be obtained are detected, and it is confirmed the miscalculation hardly degrades the service quality.
Cuffless blood pressure (BP) monitors are noninvasive devices that measure systolic and diastolic BP without an inflatable cuff. They are easy to use, safe, and relatively accurate for resting-state BP measurement. Although commercially available from online retailers, BP monitors must be approved or certificated by medical regulatory bodies for clinical use. Cuffless BP monitoring devices also need to be approved; however, only the Institute of Electrical and Electronics Engineers (IEEE) certify these devices. In this paper, the principles of cuffless BP monitors are described, and the current situation regarding BP monitor standards and approval for medical use is discussed.