Jangwon CHOI Yoonsik CHOE Yong-Goo KIM
This letter proposes a novel depth-guided inpainting scheme for the high quality hole-filling in 2D-to-3D video conversion. The proposed scheme detects and removes foreground depth layers in an image patch, enabling appropriate patch formation using only disoccluded background information. This background only patch formation helps to avoid the propagation of wrong depths over hole area, and thus improve the overall quality of converted 3D video experience. Experimental results demonstrate the proposed scheme provides visually much more pleasing inpainting results with better preserved object edges compared to the state-of-the-art depth-guided inpainting schemes.
This letter presents a technique to reduce the complexity of the soft-output multiple-input multiple-output symbol detection based on Dijkstra's algorithm. By observing that the greedy behavior of Dijkstra's algorithm can entail unnecessary tree-visits for the symbol detection, this letter proposes a technique to evict non-promising candidates early from the search space. The early eviction technique utilizes layer information to determine if a candidate is promising, which is simple but effective. When the SNR is 30dB for 6×6 64-QAM systems, the average number of tree-visits in the proposed method is reduced by 72.1% in comparison to that in the conventional Dijkstra's algorithm-based symbol detection without the early eviction.
This paper presents a DC output voltage-boosting antenna with high input impedance in wide frequency band for RF (radio frequency) energy harvesting of FM broadcasting signals. Target input power level of -20dBm is used to design a loop antenna for DC output voltage-boosting. The RF energy harvesting on YNU campus provides 924mV DC output for a single rectenna and 1.72V DC output for twin rectennas by receiving several FM broadcasting wave simultaneously.
In this letter, a fast transmit antenna selection algorithm is proposed for the spatial-temporal combining-based spatial multiplexing ultra-wideband systems on a log-normal multipath fading channel. The presented suboptimum algorithm selects the transmit antennas associated with the largest signal to noise ratio value computed by one QR decomposition operation of the full channel matrix spatially and temporally combined. It performs the iterative channel scaling operation about the channel matrix and singular value decomposition about the channel scaled matrix. It is shown that the proposed antenna selection algorithm leads to a substantial improvement in the error performance while keeping low-complexity, and obtains almost the same error performance as the exhaustive search-based optimal antenna selection algorithm.
Natsuki AIZAWA Shogo MURAMATSU Masahiro YUKAWA
A directional lapped orthogonal transform (DirLOT) is an orthonormal transform of which basis is allowed to be anisotropic with the symmetric, real-valued and compact-support property. Due to its directional property, DirLOT is superior to the existing separable transforms such as DCT and DWT in expressing diagonal edges and textures. The goal of this paper is to enhance the ability of DirLOT further. To achieve this goal, we propose a novel image restoration technique using multiple DirLOTs. This paper generalizes an image denoising technique in [1], and expands the application of multiple DirLOTs by introducing linear degradation operator P. The idea is to use multiple DirLOTs to construct a redundant dictionary. More precisely, the redundant dictionary is constructed as a union of symmetric orthonormal discrete wavelet transforms generated by DirLOTs. To select atoms fitting a target image from the dictionary, we formulate an image restoration problem as an l1-regularized least square problem, which can efficiently be solved by the iterative-shrinkage/thresholding algorithm (ISTA). The proposed technique is beneficial in expressing multiple directions of edges/textures. Simulation results show that the proposed technique significantly outperforms the non-subsampled Haar wavelet transform for deblurring, super-resolution, and inpainting.
Bofeng YUAN Xuewen LIAO Xinmin LUO
The multiple-input-multiple-output (MIMO) Gaussian wireless network with K users and an intermediate relay is investigated. In this network, each user with available local channel state information (CSI) intends to convey a multicast message to all other users while receiving all messages from other users via the relay. This model is termed the MIMO K-way relay channel with distributed CSI. For this channel, the sum capacity is shown as MK/(K-1)log(SNR)+o(SNR) where each user and the relay is equipped with M antennas. Achievability is based on the signal space alignment strategy with a K-1 time slot extension. A most general case is then considered, in which each user intends to recover all messages required within T time slots. We provide an improved scheme called fractional signal space alignment which achieves MK/(K-1) degrees of freedom in the general case and the feasibility condition is also explored.
Sha SHEN Weiwei SHEN Yibo FAN Xiaoyang ZENG
This paper describes a unified VLSI architecture which can be applied to various types of transforms used in MPEG-2/4, H.264, VC-1, AVS and the emerging new video coding standard named HEVC (High Efficiency Video Coding). A novel design named configurable butterfly array (CBA) is also proposed to support both the forward transform and the inverse transform in this unified architecture. Hadamard transform or 4/8-point DCT/IDCT are used in traditional video coding standards while 16/32-point DCT/IDCT are newly introduced in HEVC. The proposed architecture can support all these transform types in a unified architecture. Two levels (architecture level and block level) of hardware sharing are adopted in this design. In the architecture level, the forward transform can share the hardware resource with the inverse transform. In the block level, the hardware for smaller size transform can be recursively reused by larger size transform. The multiplications of 4 or 8-point transform are implemented with Multiplierless MCM (Multiple Constant Multiplication). In order to reduce the hardware overhead, the multiplications of 16/32 point DCT are implemented with ICM (input-muxed constant multipliers) instead of MCM or regular multipliers. The proposed design is 51% more area efficient than previous work. To the author's knowledge, this is the first published work to support both forward and inverse 4/8/16/32-point integer transform for HEVC standard in a unified architecture.
This paper presents an efficient algorithm for reporting all intersections among n given segments in the plane using work space of arbitrarily given size. More exactly, given a parameter s which is between Ω(1) and O(n) specifying the size of work space, the algorithm reports all the segment intersections in roughly O(n2/+ K) time using O(s) words of O(log n) bits, where K is the total number of intersecting pairs. The time complexity can be improved to O((n2/s) log s + K) when input segments have only some number of different slopes.
Tomoya OHTA Satoshi DENNO Masahiro MORIKURA
This paper proposes a reduced-complexity multiband multiple-input multiple-output (MIMO) receiver that can be used in cognitive radios. The proposed receiver uses heterodyne reception implemented with a wide-passband band-pass filter in the radio frequency (RF) stage. When an RF Hilbert transformer is utilized in the receiver, image-band interference occurs because of the transformer's imperfections. Thus, the imperfection of the Hilbert transformer is corrected in the intermediate frequency (IF) stage to reduce the hardware complexity. First, the proposed receiver estimates the channel impulse response in the presence of the strong image-band interference signals. Next, the coefficients are calculated for the correction of the imperfection at the IF stage, and are fed back to the IF stage through a feedback loop. However, the imperfection caused by the digital-to-analog (D/A) converter and the baseband amplifier in the feedback loop corrupts the coefficients on the way back to the IF stage. Therefore, the proposed receiver corrects the imperfection of the analog devices in the feedback loop. The performance of the proposed receiver is verified by using computer simulations. The proposed receiver can maintain its performance even in the presence of strong image-band interference signals and imperfection of the analog devices in the feedback loop. In addition, this paper also reveals the condition for rapid convergence.
The string analysis is a static analysis of dynamically generated strings in a target program, which is applied to check well-formed string construction in web applications. The string analysis constructs a finite state automaton that approximates a set of possible strings generated for a particular string variable at a program location at runtime. A drawback in the string analysis is imprecision in the analysis result, leading to false positives in the well-formedness checkers. To address the imprecision, this paper proposes an improvement technique of the string analysis to make it perform more precise analysis with respect to input validation in web applications. This paper presents the improvement by annotations representing screening of a set of possible strings, and empirical evaluation with experiments of the improved analyzer on real-world web applications.
Young Seung LEE Seung Keun PARK
The problem of a finite monopole antenna driven by a coaxial cable is revisited. On the basis of a variable bound approach, the radiated field around a monopole antenna can be represented in terms of the discrete modal summation. This theoretical model allows us to avoid the difficulties experienced when dealing with integral equations having different wavenumber spectra and ensures a solution in a convergent series form so that it is numerically efficient. The behaviors of the input admittance and the current distribution to characterize the monopole antenna are shown for different coaxial-antenna geometries and also compared with other existing results.
Hyung-Gu PARK SoYoung KIM Kang-Yoon LEE
In this paper, a wide input range CMOS multi-mode active rectifier is presented for a magnetic resonant wireless battery charging system. The configuration is automatically changed with respect to the magnitude of the input AC voltage. The output voltage of the multi-mode rectifier is sensed by a comparator. Furthermore, the mode of the multi-mode rectifier is automatically selected by switches among the original rectifier mode, 1-stage voltage multiplier mode, and 2-stage voltage multiplier mode. In the original rectifier, the range of the rectified output DC voltage is from 9 V to 19 V for an input AC voltage from 10 V to 20 V. In the multi-mode rectifier, the input-range is wider compared to the original rectifier by 5 V. As a result, the rectified output DC voltage ranges from 7.5 V to 19 V for an input AC voltage from 5 V to 20 V. The proposed multi-mode rectifier is fabricated in a 0.35 µm CMOS process with an active area of around 2500 µm 1750 µm. When the magnitude of the input AC voltage is 10 V, the power conversion efficiency is about 94%.
In this letter, we propose a non-cooperative limited feedback precoding and subchannel selection scheme for non-reciprocal multiple-input multiple-output (MIMO) interference channels. At each iteration of the proposed scheme, each user updates its precoder selection for each subchannel and then chooses the predetermined number of subchannels in a distributed and non-cooperative way. We present simulation results to verify the performance of the proposed scheme.
Narihiro NAKAMOTO Tomohiro OKA Shoichi KITAZAWA Hiroshi BAN Kiyoshi KOBAYASHI
To better understand antenna properties in a narrow space such as in a densely-packed device, a circular microstrip antenna in a narrow parallel-plate waveguide is theoretically studied. An analytical expression is derived for the input impedance in a parallel-plate waveguide by using the cavity model with surface admittance on the side wall. The surface admittance is defined by the external magnetic field due to the equivalent magnetic current at the aperture and takes into account the contribution of the parallel plates to the antenna. The magnetic field external to the antenna, that is in the parallel-plate region, is determined by using a dyadic Green's function. The input impedance is then calculated by a basic definition based on the conservation of the complex power. An analytical expression which couples the resonant frequency and the surface susceptance is also formulated. Presented expressions are validated by comparison with experimental results.
In this letter, we consider a control problem of a chain of integrators where there is an uncertain delay in the input and sensor noise. This is an output feedback control result over [10] in which a state feedback control is suggested. The several generalized features are: i) output feedback control is developed instead of full state feedback control, ii) uncertain delay in the input is allowed, iii) all states are derived to be arbitrarily small under uncertain sensor noise.
Xiaodong SUN Shihua ZHU Zhenjie FENG Hui HUI
In this letter, we derive a lower bound on the diversity multiplexing tradeoff (DMT) in multiple-input multiple-output (MIMO) nonorthogonal amplify-and-forward (NAF) cooperative channels with resolution-constrained channel state feedback. It is shown that power control based on the feedback improves the DMT performance significantly in contrast to the no-feedback case. For instance, the maximum diversity increase is exponential in K with K-level feedback.
Hua JIANG Kanglian ZHAO Yang LI Sidan DU
In this letter we design a new family of space-time block codes (STBC) for multi-input multi-output (MIMO) systems. The complex orthogonal STBC achieves full diversity and full transmission rate with fast maximum-likelihood decoding when only two transmit antennas are employed. By combining the Alamouti STBC and the multidimensional signal constellation rotation based on the cyclotomic number field, we construct cyclotomic orthogonal space-time block codes (COSTBCs) which can achieve full diversity and full rate for multiple transmit antennas. Theoretical analysis and simulation results demonstrate excellent performance of the proposed codes, while the decoding complexity is further reduced.
In this letter we propose a practical sensing-based opportunistic spectrum sharing scheme for cognitive radio (CR) downlink MIMO systems. Multi-antennas are exploited at the secondary transmitter to opportunistically access the primary spectrum and effectively achieve a balance between secondary throughput maximization and mitigation of interference probably caused to primary radio link. We first introduce a brief secondary frame structure, in which a sensing phase is exploited to estimate the effective interference channel. According to the sensing result and taking the interference caused by the primary link into account, we propose an enhanced signal-to-leakage-and-noise ratio (SLNR)-based precoding scheme for the secondary transmitter. Compared to conventional schemes where perfect knowledge of the channels over which the CR transmitter interferes with the primary receiver (PR) is assumed, our proposed scheme shows its superiority and simulation results validate this.
Hiroshi KUBO Masatsugu HIGASHINAKA Akihiro OKAZAKI
This paper proposes non-coherent multiple-input multi-ple-output (MIMO) communication systems employing per transmit antenna differential mapping (PADM), which generates an independent differentially encoded sequence for each of the multiple transmit antennas by means of space-time coding and mapping. At a receiver, the proposed PADM employs adaptive maximum-likelihood detection (MLD). The features of PADM are as follows: 1) it has excellent tracking performance for fast time-varying fading channels, because it can detect transmitted data without needing channel state information (CSI); 2) it can be applied not only to transmit diversity (TD) but also to spatial multiplexing (SM). In this paper, we analyze the adaptive MLD based on pseudo matrix inversion and derive its metric for data detection. In order to satisfy requirements on multiple transmitted sequences for the adaptive MLD, this paper proposes a mapping rule for PADM. Next, this paper describes a receiver structure based on per-survivor processing (PSP), which can drastically reduce the complexity of adaptive MLD. Finally, computer simulations confirm that the proposed non-coherent MIMO communication systems employing PADM have excellent tracking capability for TD and SM on fast time-varying fading channels.
Yuki SATOMI Arata KAWAMURA Youji IIGUNI
For an adaptive system identification filter with a stochastic input signal, a coefficient vector updated with an NLMS algorithm converges in the sense of ensemble average and the expected convergence vector has been revealed. When the input signal is periodic, the convergence of the adaptive filter coefficients has also been proved. However, its convergence vector has not been revealed. In this paper, we derive the convergence vector of adaptive filter coefficients updated with the NLMS algorithm in system identification for deterministic sinusoidal inputs. Firstly, we derive the convergence vector when a disturbance does not exist. We show that the derived convergence vector depends only on the initial vector and the sinusoidal frequencies, and it is independent of the step-size for adaptation, sinusoidal amplitudes, and phases. Next, we derive the expected convergence vector when the disturbance exists. Simulation results support the validity of the derived convergence vectors.