Takuya MURAKAMI Junya SHIRAISHI Hiroyuki YOMO
This paper focuses on top-k query in cluster-based multi-hop wireless sensor networks (WSNs) employing wake-up receivers. We aim to design wake-up control that enables a sink to collect top-k data set, i.e., k highest readings of sensor nodes within a network, efficiently in terms of energy consumption and delay. Considering a tree-based clustered WSN, we propose a cluster-based wake-up control, which conducts activations and data collections of different clusters sequentially while the results of data collections at a cluster, i.e., the information on provisional top-k data set, are exploited for reducing unnecessary data transmissions at the other clusters. As a wake-up control employed in each cluster, we consider two different types of control: countdown content-based wake-up (CDCoWu) and identity-based wake-up (IDWu). CDCoWu selectively activates sensor nodes storing data belonging to top-k dataset while IDWu individually wakes up all sensor nodes within a cluster. Based on the observation that the best control depends on the number of cluster members, we introduce a hybrid mechanism of wake-up control, where a wake-up control employed at each cluster is selected between CDCoWu and IDWu based on its number of cluster members. Our simulation results show that the proposed hybrid wake-up control achieves smaller energy consumption and data collection delay than the control solely employing conventional CDCoWu or IDWu.
Tomoya MATSUDA Koji NISHIMURA Hiroyuki HASHIGUCHI
Phased-array technology is primarily employed in atmospheric and wind profiling radars for meteorological remote sensing. As a novel avenue of advancement in phased-array technology, the Multiple-Input Multiple-Output (MIMO) technique, originally developed for communication systems, has been applied to radar systems. A MIMO radar system can be used to create a virtual receive antenna aperture plane with transmission freedom. The MIMO technique requires orthogonal waveforms on each transmitter to identify the transmit signals using multiple receivers; various methods have been developed to realize the orthogonality. In this study, we focus on the Doppler Division Multiple Access (DDMA) MIMO technique by using slightly different frequencies for the transmit waveforms, which can be separated by different receivers in the Doppler frequency domain. The Middle and Upper atmosphere (MU) radar is a VHF-band phased array atmospheric radar with multi-channel receivers. Additional configurations are necessary, requiring the inclusion of multi-channel transmitters to enable its operation as a MIMO radar. In this study, a comparison between the brightness distribution of the beamformer, utilizing echoes reflected from the moon, and the antenna pattern obtained through calculations revealed a high degree of consistency, which means that the MU radar functions effectively as a MIMO radar. Furthermore, it is demonstrated that the simultaneous application of MIMO and Capon techniques has a mutually enhancing effect.
Pingping JI Lingge JIANG Chen HE Di HE Zhuxian LIAN
High altitude platform (HAP), known as line-of-sight dominated communications, effectively enhance the spectral efficiency of wireless networks. However, the line-of-sight links, particularly in urban areas, may be severely deteriorated due to the complex communication environment. The reconfigurable intelligent surface (RIS) is employed to establish the cascaded-link and improve the quality of communication service by smartly reflecting the signals received from HAP to users without direct-link. Motivated by this, the joint precoding scheme for a novel RIS-aided beamspace HAP with non-orthogonal multiple access (HAP-NOMA) system is investigated to maximize the minimum user signal-to-leakage-plus-noise ratio (SLNR) by considering user fairness. Specifically, the SLNR is utilized as metric to design the joint precoding algorithm for a lower complexity, because the isolation between the precoding obtainment and power allocation can make the two parts be attained iteratively. To deal with the formulated non-convex problem, we first derive the statistical upper bound on SLNR based on the random matrix theory in large scale antenna array. Then, the closed-form expressions of power matrix and passive precoding matrix are given by introducing auxiliary variables based on the derived upper bound on SLNR. The proposed joint precoding only depends on the statistical channel state information (SCSI) instead of instantaneous channel state information (ICSI). NOMA serves multi-users simultaneously in the same group to compensate for the loss of spectral efficiency resulted from the beamspace HAP. Numerical results show the effectiveness of the derived statistical upper bound on SLNR and the performance enhancement of the proposed joint precoding algorithm.
Shuai LI Xinhong YOU Shidong ZHANG Mu FANG Pengping ZHANG
Emerging data-intensive services in distribution grid impose requirements of high-concurrency access for massive internet of things (IoT) devices. However, the lack of effective high-concurrency access management results in severe performance degradation. To address this challenge, we propose a cloud-edge-device collaborative high-concurrency access management algorithm based on multi-timescale joint optimization of channel pre-allocation and load balancing degree. We formulate an optimization problem to minimize the weighted sum of edge-cloud load balancing degree and queuing delay under the constraint of access success rate. The problem is decomposed into a large-timescale channel pre-allocation subproblem solved by the device-edge collaborative access priority scoring mechanism, and a small-timescale data access control subproblem solved by the discounted empirical matching mechanism (DEM) with the perception of high-concurrency number and queue backlog. Particularly, information uncertainty caused by externalities is tackled by exploiting discounted empirical performance which accurately captures the performance influence of historical time points on present preference value. Simulation results demonstrate the effectiveness of the proposed algorithm in reducing edge-cloud load balancing degree and queuing delay.
Takayuki SASAKI Mami KAWAGUCHI Takuhiro KUMAGAI Katsunari YOSHIOKA Tsutomu MATSUMOTO
In recent years, cyber attacks against infrastructure have become more serious. Unfortunately, infrastructures with vulnerable remote management devices, which allow attackers to control the infrastructure, have been reported. Targeted attacks against infrastructure are conducted manually by human attackers rather than automated scripts. Here, open questions are how often the attacks against such infrastructure happen and what attackers do after intrusions. In this empirical study, we observe the accesses, including attacks and security investigation activities, using the customized infrastructure honeypot. The proposed honeypot comprises (1) a platform that easily deploys real devices as honeypots, (2) a mechanism to increase the number of fictional facilities by changing the displayed facility names on the WebUI for each honeypot instance, (3) an interaction mechanism with visitors to infer their purpose, and (4) tracking mechanisms to identify visitors for long-term activities. We implemented and deployed the honeypot for 31 months. Our honeypot observed critical operations, such as changing configurations of a remote management device. We also observed long-term access to WebUI and Telnet service of the honeypot.
Chang SUN Xiaoyu SUN Jiamin LI Pengcheng ZHU Dongming WANG Xiaohu YOU
The application of millimeter wave (mmWave) directional transmission technology in high-speed railway (HSR) scenarios helps to achieve the goal of multiple gigabit data rates with low latency. However, due to the high mobility of trains, the traditional initial access (IA) scheme with high time consumption is difficult to guarantee the effectiveness of the beam alignment. In addition, the high path loss at the coverage edge of the millimeter wave remote radio unit (mmW-RRU) will also bring great challenges to the stability of IA performance. Fortunately, the train trajectory in HSR scenarios is periodic and regular. Moreover, the cell-free network helps to improve the system coverage performance. Based on these observations, this paper proposes an efficient IA scheme based on location and history information in cell-free networks, where the train can flexibly select a set of mmW-RRUs according to the received signal quality. We specifically analyze the collaborative IA process based on the exhaustive search and based on location and history information, derive expressions for IA success probability and delay, and perform the numerical analysis. The results show that the proposed scheme can significantly reduce the IA delay and effectively improve the stability of IA success probability.
Xi CHEN Guodong JIANG Kaikai CHI Shubin ZHANG Gang CHEN Jiang LIU
Many nodes in Internet of Things (IoT) rely on batteries for power. Additionally, the demand for executing compute-intensive and latency-sensitive tasks is increasing for IoT nodes. In some practical scenarios, the computation tasks of WDs have the non-separable characteristic, that is, binary offloading strategies should be used. In this paper, we focus on the design of an efficient binary offloading algorithm that minimizes system energy consumption (EC) for TDMA-based wireless-powered multi-access edge computing networks, where WDs either compute tasks locally or offload them to hybrid access points (H-APs). We formulate the EC minimization problem which is a non-convex problem and decompose it into a master problem optimizing binary offloading decision and a subproblem optimizing WPT duration and task offloading transmission durations. For the master problem, a DRL based method is applied to obtain the near-optimal offloading decision. For the subproblem, we firstly consider the scenario where the nodes do not have completion time constraints and obtain the optimal analytical solution. Then we consider the scenario with the constraints. By jointly using the Golden Section Method and bisection method, the optimal solution can be obtained due to the convexity of the constraint function. Simulation results show that the proposed offloading algorithm based on DRL can achieve the near-minimal EC.
Ryota KOBAYASHI Takanori HARA Yasuaki YUDA Kenichi HIGUCHI
This paper extends our previously reported non-orthogonal multiple access (NOMA)-based highly-efficient and low-latency hybrid automatic repeat request (HARQ) method for ultra-reliable low latency communications (URLLC) to the case with inter-base station cooperation. In the proposed method, delay-sensitive URLLC packets are preferentially multiplexed with best-effort enhanced mobile broadband (eMBB) packets in the same channel using superposition coding to reduce the transmission latency of the URLLC packet while alleviating the throughput loss in eMBB. Although data transmission to the URLLC terminal is conducted by multiple base stations based on inter-base station cooperation, the proposed method allocates radio resources to URLLC terminals which include scheduling (bandwidth allocation) and power allocation at each base station independently to achieve the short transmission latency required for URLLC. To avoid excessive radio resource assignment to URLLC terminals due to independent resource assignment at each base station, which may result in throughput degradation in eMBB terminals, we employ an adaptive path-loss-dependent weighting approach in the scheduling-metric calculation. This achieves appropriate radio resource assignment to URLLC terminals while reducing the packet error rate (PER) and transmission delay time thanks to the inter-base station cooperation. We show that the proposed method significantly improves the overall performance of the system that provides simultaneous eMBB and URLLC services.
Meiyuan MIAO Chedlia BEN NAILA Hiraku OKADA Masaaki KATAYAMA
This study proposes a new asynchronous Multi-Rate Multiple-Access Differential Chaos Shift Keying (MRMA-DCSK) scheme, ensuring significant data rates for all users. This scheme assigns a unique chaos sequence with a different length to each user. During the first data transmission period, each user transmits the chaos sequence as the reference signal, followed by multiple data bits by sharing the same reference signal in subsequent periods. The proposed scheme affects the bit-error-rate (BER) performance with the number of users, data rate related parameters (L), and length of chaos signals. The simulation results are verified by the derived analysis and show that the proposed scheme achieves higher data rates (from 1/2 to L/L+1) than a conventional scheme while enhancing bit-error-rate (BER) performance.
Hidenori MATSUO Ryo TAKAHASHI Fumiyuki ADACHI
To cope with ever growing mobile data traffic, we recently proposed a concept of cellular ultra-dense radio access network (RAN). In the cellular ultra-dense RAN, a number of distributed antennas are deployed in the base station (BS) coverage area (cell) and user-clusters are formed to perform small-scale distributed multiuser multi-input multi-output (MU-MIMO) transmission and reception in each user-cluster in parallel using the same frequency resource. We also proposed a decentralized interference coordination (IC) framework to effectively mitigate both intra-cell and inter-cell interferences caused in the cellular ultra-dense RAN. The inter-cell IC adopted in this framework is the fractional frequency reuse (FFR), realized by applying the channel segregation (CS) algorithm, and is called CS-FFR in this paper. CS-FFR divides the available bandwidth into several sub-bands and allocates multiple sub-bands to different cells. In this paper, focusing on the optimization of the CS-FFR, we find by computer simulation the optimum bandwidth division number and the sub-band allocation ratio to maximize the link capacity. We also discuss the convergence speed of CS-FFR in a cellular ultra-dense RAN.
Satoshi DENNO Taichi YAMAGAMI Yafei HOU
This paper proposes low complexity resource allocation in frequency domain non-orthogonal multiple access where many devices access with a base station. The number of the devices is assumed to be more than that of the resource for network capacity enhancement, which is demanded in massive machine type communications (mMTC). This paper proposes two types of resource allocation techniques, all of which are based on the MIN-MAX approach. One of them seeks for nicer resource allocation with only channel gains. The other technique applies the message passing algorithm (MPA) for better resource allocation. The proposed resource allocation techniques are evaluated by computer simulation in frequency domain non-orthogonal multiple access. The proposed technique with the MPA achieves the best bit error rate (BER) performance in the proposed techniques. However, the computational complexity of the proposed techniques with channel gains is much smaller than that of the proposed technique with the MPA, whereas the BER performance of the proposed techniques with channel gains is only about 0.1dB inferior to that with the MPA in the multiple access with the overloading ratio of 1.5 at the BER of 10-4. They attain the gain of about 10dB at the BER of 10-4 in the multiple access with the overloading ration of 2.0. Their complexity is 10-16 as small as the conventional technique.
Ryota KOBAYASHI Yasuaki YUDA Kenichi HIGUCHI
Hybrid automatic repeat request (HARQ) is an essential technology that efficiently reduces the transmission error rate. However, for ultra-reliable low latency communications (URLLC) in the 5th generation mobile communication systems and beyond, the increase in latency due to retransmission must be minimized in HARQ. In this paper, we propose a highly-efficient low-latency HARQ method built on non-orthogonal multiple access (NOMA) for URLLC while minimizing the performance loss for coexisting services (use cases) such as enhanced mobile broadband (eMBB). The proposed method can be seen as an extension of the conventional link-level non-orthogonal HARQ to the system-level protocol. This mitigates the problems of the conventional link-level non-orthogonal HARQ, which are decoding error under poor channel conditions and an increase in transmission delay due to restrictions in retransmission timing. In the proposed method, delay-sensitive URLLC packets are preferentially multiplexed with best-effort eMBB packets in the same channel using superposition coding to reduce the transmission latency of the URLLC packet while alleviating the throughput loss in eMBB. This is achieved using a weighted channel-aware resource allocator (scheduler). The inter-packet interference multiplexed in the same channel is removed using a successive interference canceller (SIC) at the receiver. Furthermore, the transmission rates for the initial transmission and retransmission are controlled in an appropriate manner for each service in order to deal with decoding errors caused by error in transmission rate control originating from a time varying channel. We show that the proposed method significantly improves the overall performance of a system that simultaneously provides eMBB and URLLC services.
Non-orthogonal multiple access (NOMA), which combines multiple user signals and transmits the combined signal over one channel, can achieve high spectral efficiency for mobile communications. However, combining the multiple signals can lead to degradation of bit error rates (BERs) of NOMA under severe channel conditions. In order to improve the BER performance of NOMA, this paper proposes a new NOMA scheme based on orthogonal space-time block codes (OSTBCs). The proposed scheme transmits several multiplexed signals over their respective orthogonal time-frequency channels, and can gain diversity effects due to the orthogonality of OSTBC. Furthermore, the new scheme can detect the user signals using low-complexity linear detection in contrast with the conventional NOMA. The paper focuses on the Alamouti code, which can be considered the simplest OSTBC, and theoretically analyzes the performance of the linear detection. Computer simulations under the condition of the same bit rate per channel show that the Alamouti code based scheme using two channels is superior to the conventional NOMA using one channel in terms of BER performance. As shown by both the theoretical and simulation analyses, the linear detection for the proposed scheme can maintain the same BER performance as that of the maximum likelihood detection, when the two channels have the same frequency response and do not bring about any diversity effects, which can be regarded as the worst case.
Mitsuru UESUGI Yoshiaki SHINAGAWA Kazuhiro KOSAKA Toru OKADA Takeo UETA Kosuke ONO
With the rapid increase in the amount of data communication in 5G networks, there is a strong demand to reduce the power of the entire network, so the use of highly power-efficient millimeter-wave (mm-wave) networks is being considered. However, while mm-wave communication has high power efficiency, it has strong straightness, so it is difficult to secure stable communication in an environment with blocking. Especially when considering use cases such as autonomous driving, continuous communication is required when transmitting streaming data such as moving images taken by vehicles, it is necessary to compensate the blocking problem. For this reason, the authors examined an optimum radio access technology (RAT) selection scheme which selects mm-wave communication when mm-wave can be used and select wide-area macro-communication when mm-wave may be blocked. In addition, the authors implemented the scheme on a prototype device and conducted field tests and confirmed that mm-wave communication and macro communication were switched at an appropriate timing.
Tadayoshi ENOMOTO Nobuaki KOBAYASHI
We developed a self-controllable voltage level (SVL) circuit and applied this circuit to a single-power-supply, six-transistor complementary metal-oxide-semiconductor static random-access memory (SRAM) to not only improve both write and read performances but also to achieve low standby power and data retention (holding) capability. The SVL circuit comprises only three MOSFETs (i.e., pull-up, pull-down and bypass MOSFETs). The SVL circuit is able to adaptively generate both optimal memory cell voltages and word line voltages depending on which mode of operation (i.e., write, read or hold operation) was used. The write margin (VWM) and read margin (VRM) of the developed (dvlp) SRAM at a supply voltage (VDD) of 1V were 0.470 and 0.1923V, respectively. These values were 1.309 and 2.093 times VWM and VRM of the conventional (conv) SRAM, respectively. At a large threshold voltage (Vt) variability (=+6σ), the minimum power supply voltage (VMin) for the write operation of the conv SRAM was 0.37V, whereas it decreased to 0.22V for the dvlp SRAM. VMin for the read operation of the conv SRAM was 1.05V when the Vt variability (=-6σ) was large, but the dvlp SRAM lowered it to 0.41V. These results show that the SVL circuit expands the operating voltage range for both write and read operations to lower voltages. The dvlp SRAM reduces the standby power consumption (PST) while retaining data. The measured PST of the 2k-bit, 90-nm dvlp SRAM was only 0.957µW at VDD=1.0V, which was 9.46% of PST of the conv SRAM (10.12µW). The Si area overhead of the SVL circuits was only 1.383% of the dvlp SRAM.
Motoi IWASHITA Hirotaka SUGITA
In recent years, the market size for internet advertising has been increasing with the expansion of the Internet. Among the internet advertising technologies, affiliate services, which are a performance-based service, use cookies to track and measure the performance of affiliates. However, for the purpose of safeguarding personal information, cookies tend to be regulated, which leads to concerns over whether normal tracking by cookies works as intended. Therefore, in this study, the recent problems from the perspectives of affiliates, affiliate service providers, and advertisers are extracted, and a framework of cookie-independent measuring engagement method using access logs is proposed and open issues are discussed for future affiliate services.
Megumi ASADA Nobuhide NONAKA Kenichi HIGUCHI
We propose an efficient hybrid automatic repeat request (HARQ) method that simultaneously achieves packet combining and resolution of the collisions of random access identifiers (RAIDs) during retransmission in a non-orthogonal multiple access (NOMA)-based random access system. Here, the RAID functions as a separator for simultaneously received packets that use the same channel in NOMA. An example of this is a scrambling code used in 4G and 5G systems. Since users independently select a RAID from the candidate set prepared by the system, the decoding of received packets fails when multiple users select the same RAID. Random RAID reselection by each user when attempting retransmission can resolve a RAID collision; however, packet combining between the previous and retransmitted packets is not possible in this case because the base station receiver does not know the relationship between the RAID of the previously transmitted packet and that of the retransmitted packet. To address this problem, we propose a HARQ method that employs novel hierarchical tree-structured RAID groups in which the RAID for the previous packet transmission has a one-to-one relationship with the set of RAIDs for retransmission. The proposed method resolves RAID collisions at retransmission by randomly reselecting for each user a RAID from the dedicated RAID set from the previous transmission. Since the relationship between the RAIDs at the previous transmission and retransmission is known at the base station, packet combining is achieved simultaneously. Computer simulation results show the effectiveness of the proposed method.
Guoqing DONG Zhen YANG Youhong FENG Bin LYU
In this paper, a novel reconfigurable intelligent surface (RIS)-aided full-duplex (FD) cooperative non-orthogonal multiple access (CNOMA) network is investigated over Nakagami-m fading channels, where two RISs are employed to help the communication of paired users. To evaluate the potential benefits of our proposed scheme, we first derive the closed-form expressions of the outage probability. Then, we derive users' diversity orders according to the asymptotic approximation at high signal-to-noise-ratio (SNR). Simulation results validate our analysis and reveal that users' diversity orders are affected by their channel fading parameters, the self-interference of FD, and the number of RIS elements.
Xiaoyu WAN Yu WANG Zhengqiang WANG Zifu FAN Bin DUO
In this paper, we investigate the sum rate (SR) maximization problem for downlink cooperative non-orthogonal multiple access (C-NOMA) system under in-phase and quadrature-phase (IQ) imbalance at the base station (BS) and destination. The BS communicates with users by a half-duplex amplified-and-forward (HD-AF) relay under imperfect IQ imbalance. The sum rate maximization problem is formulated as a non-convex optimization with the quality of service (QoS) constraint for each user. We first use the variable substitution method to transform the non-convex SR maximization problem into an equivalent problem. Then, a joint power and rate allocation algorithm is proposed based on successive convex approximation (SCA) to maximize the SR of the systems. Simulation results verify that the algorithm can improve the SR of the C-NOMA compared with the cooperative orthogonal multiple access (C-OMA) scheme.
Shu XU Chen LIU Hong WANG Mujun QIAN Jin LI
Reconfigurable intelligent surface (RIS) has the capability of boosting system performance by manipulating the wireless propagation environment. This paper investigates a downlink RIS-aided non-orthogonal multiple access (NOMA) system, where a RIS is deployed to enhance physical-layer security (PLS) in the presence of an eavesdropper. In order to improve the main link's security, the RIS is deployed between the source and the users, in which a reflecting element separation scheme is developed to aid data transmission of both the cell-center and the cell-edge users. Additionally, the closed-form expressions of secrecy outage probability (SOP) are derived for the proposed RIS-aided NOMA scheme. To obtain more deep insights on the derived results, the asymptotic performance of the derived SOP is analyzed. Moreover, the secrecy diversity order is derived according to the asymptotic approximation in the high signal-to-noise ratio (SNR) and main-to-eavesdropper ratio (MER) regime. Furthermore, based on the derived results, the power allocation coefficient and number of elements are optimized to minimize the system SOP. Simulations demonstrate that the theoretical results match well with the simulation results and the SOP of the proposed scheme is clearly less than that of the conventional orthogonal multiple access (OMA) scheme obviously.