1-8hit |
Ya-Ting SHYU Ying-Zu LIN Rong-Sing CHU Guan-Ying HUANG Soon-Jyh CHANG
Real-time on-chip measurement of bit error rate (BER) for high-speed analog-to-digital converters (ADCs) does not only require expensive multi-port high-speed data acquisition equipment but also enormous post-processing. This paper proposes a low-cost built-in-self-test (BIST) circuit for high-speed ADC BER test. Conventionally, the calculation of BER requires a high-speed adder. The presented method takes the advantages of Gray coding and only needs simple logic circuits for BER evaluation. The prototype of the BIST circuit is fabricated along with a 5-bit high-speed flash ADC in a 90-nm CMOS process. The active area is only 90 µm 70 µm and the average power consumption is around 0.3 mW at 700 MS/s. The measurement of the BIST circuit shows consistent results with the measurement by external data acquisition equipment.
Hyeonuk SON Incheol KIM Sang-Goog LEE Jin-Ho AHN Jeong-Do KIM Sungho KANG
This paper proposes a built-in self-test (BIST) scheme for noise-tolerant testing of a digital-to-analogue converter (DAC). The proposed BIST calculates the differences in output voltages between a DAC and test modules. These differences are used as the inputs of an integrator that determines integral nonlinearity (INL). The proposed method has an advantage of random noise cancelation and achieves a higher test accuracy than do the conventional BIST methods. The simulation results show high standard noise-immunity and fault coverage for the proposed method.
Shaochong LEI Feng LIANG Zeye LIU Xiaoying WANG Zhen WANG
To tackle the increasing testing power during built-in self-test (BIST) operations, this paper proposes a new test pattern generator (TPG). With the proposed reconfigurable LFSR, the reconfigurable Johnson counter, the decompressor and the XOR gate network, the introduced TPG can produce the single input change (SIC) sequences with few repeated vectors. The proposed SIC sequences minimize switching activities of the circuit under test (CUT). Simulation results on ISCAS benchmarks demonstrate that the proposed method can effectively save test power, and does not impose high impact on test length and hardware for the scan based design.
Wan Zuha WAN HASAN Izhal ABD HALIN Roslina MOHD SIDEK Masuri OTHMAN
Testing and diagnosis techniques play a key role in the advance of semiconductor memory technology. The challenge of failure detection has created intensive investigation on efficient testing and diagnosis algorithm for better fault coverage and diagnostic resolution. At present, March test algorithm is used to detect and diagnose all faults related to Random Access Memories. However, the test and diagnosis process are mainly done manually. Due to this, a systematic approach for developing and evaluating memory test algorithm is required. This work is focused on incorporating the March based test algorithm using a software simulator tool for implementing a fast and systematic memory testing algorithm. The simulator allows a user through a GUI to select a March based test algorithm depending on the desired fault coverage and diagnostic resolution. Experimental results show that using the simulator for testing is more efficient than that of the traditional testing algorithm. This new simulator makes it possible for a detailed list of stuck-at faults, transition faults and coupling faults covered by each algorithm and its percentage to be displayed after a set of test algorithms has been chosen. The percentage of diagnostic resolution is also displayed. This proves that the simulator reduces the trade-off between test time, fault coverage and diagnostic resolution. Moreover, the chosen algorithm can be applied to incorporate with memory built-in self-test and diagnosis, to have a better fault coverage and diagnostic resolution. Universities and industry involved in memory Built-in-Self test, Built-in-Self repair and Built-in-Self diagnose will benefit by saving a few years on researching an efficient algorithm to be implemented in their designs.
Feng LIANG ShaoChong LEI ZhiBiao SHAO
An optimized Built-In Self-Test technology is proposed in this paper. A simplified algebraic model is developed to represent the configurations of single input change circuits. A novel single input change sequence generation technique is designed. It consists of a modified scan shift register, a seed storage array and a series of XOR gates. This circuitry can automatically generate single input change sequences of more unique vectors. Experimental results based on the ISCAS-89 benchmark show that the proposed method can achieve high stuck-at fault coverage with low switching activity during test applications.
Cheng-Chung HSU Wu-Shiung FENG
In this letter, a novel built-in self-test (BIST) structure based on operational transconductance amplifiers and grounded capacitors (OTA-Cs) for the fault diagnosis of analog circuits is proposed. The proposed analog BIST structure, namely ABIST, can be used to increase the number of test points, sampling and controlling of all test points with voltage data, and making less time for test signal observable. Experimental measurements have been made to verify that the proposed ABIST structure is effective.
Kiyoshi FURUYA Susumu YAMAZAKI Masayuki SATO
Transition coverage has been proposed as a measure of two-pattern test capabilities of TPG circuits for use in BIST. This paper investigates experimentally the relationships between transition coverages and actual stuck-open fault coverages in order to reveal what kind of circuits are appropriate for two-pattern testing. Fault simulation was performed using conventional (n-stage) LFSR, 2n-stage LFSR, and one-dimensional cellular automata (CAs) as TPG circuits and such sample circuits as balanced NAND tree and some ISCAS '85 benchmark circuits as CUTs. It was found that CAs which are designed so as to apply exhaustive transitions to any 3-dimensional subspaces can detect high rate of stuck-open faults. Influence of hazards of decreasing the fault coverage is also mentioned.
Kiyoshi FURUYA Seiji SEKI Edward J. McCLUSKEY
A method to design one-dimensional cellular arrays to be used as TPG circuits of BIST is described. The interconnections between cells are not limited to adjacent ones but allowed to some neighbors. Completely regular structures that have full-transition coverages for every k-dimensional subspace of state variables are first shown. Then, almost regular arrays which can operate on maximum cycles are derived based on fast parallel implementations of LFSRs.