Keyword Search Result

[Keyword] eigenmode(17hit)

1-17hit
  • Analysis of Beamforming for OAM Communication Using Loop Antenna Arrays and Paraboloids Open Access

    Akira SAITOU  Kaito UCHIDA  Kanki KITAYAMA  Ryo ISHIKAWA  Kazuhiko HONJO  

     
    PAPER-Antennas and Propagation

      Vol:
    E107-B No:11
      Page(s):
    776-784

    Analytical expression of transmission for the orbital angular momentum (OAM) communication using loop antenna arrays and paraboloids is derived to achieve a communication distance of 100 m. With the field distribution of the single “transformed OAM mode” radiated by a loop antenna, the collimated field by the transmitting paraboloid and its diffracted field are analytically derived. Effects of frequencies, sizes of paraboloids, and shifts of transmitting and receiving arrays from the focal planes are included. With the diffracted field distribution on the focal plane of the receiving paraboloid, transmission between the transmitting and receiving loop antennas is analytically estimated. It is shown that the transmission between the antennas with different OAM modes is null, but the transmission between the antennas with the same mode can be reduced. To clarify the mechanism of the reduction, factors of the reduction are quantitatively defined, and the explicit formulae are derived. Based on the analytical results, numerical estimation for a communication distance of 100 m is demonstrated, where the frequency, the focal length, and the size of the paraboloid are 150 GHz, 50 cm and 100 cm, respectively. Where both arrays are located on each focal plane, the transmission for the signal is more than -7.78 dB for eight kinds of OAM modes. The transmission is the least for the highest-order mode. The transmission loss is shown to be mitigated by optimizing the shifts of transmitting and receiving arrays from their focal planes. The loss is made almost even by exploiting the tradeoff of the improvement for the mode orders. The transmission is improved by 5.98 dB, to be more than -1.80 dB, by optimizing the shifts of the arrays.

  • Pattern Synthesis of Spatial Eigenmodes Exploiting Spherical Conformal Array Open Access

    Akira SAITOU  Ryo ISHIKAWA  Kazuhiko HONJO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/04/06
      Vol:
    E105-B No:10
      Page(s):
    1231-1239

    Unique spatial eigenmodes for the spherical coordinate system are shown to be successfully synthesized by properly allocated combinations of current distributions along θ' and φ' on a spherical conformal array. The allocation ratios are analytically found in a closed form with a matrix that relates the expansion coefficients of the current to its radiated field. The coefficients are obtained by general Fourier expansion of the current and the mode expansion of the field, respectively. The validity of the obtained formulas is numerically confirmed, and important effects of the sphere radius and the degrees of the currents on the radiated fields are numerically explained. The formulas are used to design six current distributions that synthesize six unique eigenmodes. The accuracy of the synthesized fields is quantitatively investigated, and the accuracy is shown to be remarkably improved by more than 27dB with two additional kinds of current distributions.

  • Coaxially Fed Antenna Composed of Monopole and Choke Structure Using Two Different Configurations of Composite Right/Left-Handed Coaxial Lines

    Takatsugu FUKUSHIMA  Naobumi MICHISHITA  Hisashi MORISHITA  Naoya FUJIMOTO  

     
    PAPER-Antennas

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    205-215

    Two kinds of composite right/left-handed coaxial lines (CRLH CLs) are designed for an antenna element. The dispersion relations of the infinite periodic CRLH CLs are designed to occur -1st resonance at around 700 MHz, respectively. The designed CRLH CLs comprise a monopole and a choke structure for antenna elements. To verify the resonant modes and frequencies, the monopole structure, the choke structure, and the antenna element which is combined the monopole and the choke structures are simulated by eigenmode analysis. The resonant frequencies correspond to the dispersion relations. The monopole and the choke structures are applied to the coaxially fed antenna. The proposed antenna matches at 710 MHz and radiates. At the resonant frequency, the total length of the proposed antenna which is the length of the monopole structure plus the choke structure is 0.12 wavelength. The characteristics of the proposed antenna has been compared with that of the conventional coaxially fed monopole antenna without the choke structure and the sleeve antenna with the quarter-wavelength choke structure. The radiation pattern of the proposed antenna is omnidirectional, the total antenna efficiency is 0.73 at resonant frequencies, and leakage current is suppressed lesser than -10 dB at resonant frequency. The propose antenna is fabricated and measured. The measured |S11| characteristics, radiation patterns, and the total antenna efficiency are in good agreement with the simulated results.

  • Four-Stream Parallel Transmission for Short-Range MIMO Using Only Passive Analog Components

    Kentaro MURATA  Naoki HONMA  Kentaro NISHIMORI  David M. KLYMYSHYN  Hisashi MORISHITA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:1
      Page(s):
    69-80

    An analog-beamforming-based eigenmode transmission technique is proposed that employs a network of interconnected 180-degree hybrid couplers at both transmitting and receiving sides of a plane-symmetrically configured short-range MIMO system. This technique can orthogonalize MIMO channels regardless of array parameters such as antenna spacing and Tx-Rx distance, provided the MIMO array is symmetric. For verifying the effectiveness of the proposed technique in channel orthogonalization, an experiment is conducted using a 4×4 MIMO array consisting of microstrip antennas and cascade-connected rat-race hybrid couplers. The results indicate a reduction in interference by approximately -28.3dB on average compared to desired signal power, and the ability to realize four-stream parallel MIMO transmission by using only analog passive networks. The proposed technique can achieve channel capacity almost equivalent to that of eigenbeam space division multiplexing with ideal digital beamforming.

  • Joint Tx/Rx MMSE Filtering for Single-Carrier MIMO Eigenmode Transmission Using Iterative Interference Cancellation

    Shinya KUMAGAI  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:1
      Page(s):
    192-201

    In this paper, we propose a new joint transmit and receive spatial/frequency-domain filtering for single-carrier (SC) multiple-input multiple-output (MIMO) eigenmode transmission using iterative interference cancellation (IC). Iterative IC is introduced to a previously proposed joint transmit and receive spatial/frequency-domain filtering based on minimum mean square error criterion (called joint Tx/Rx MMSE filtering) to reduce the residual inter-symbol interference (ISI) after the Rx filtering. The optimal Tx/Rx filters are derived based on the MMSE criterion taking into account the iterative IC. The superiority of our proposed technique is confirmed by computer simulation.

  • Equivalent Circuit of Aperture-Coupled Transmission-Line Cavities Involving Dielectric Loss and Wall Loss

    Shin-ichi MORIYAMA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E96-C No:12
      Page(s):
    1525-1535

    The equivalent circuit of aperture-coupled cavities filled with a lossy dielectric is considered by means of an eigenmode expansion technique founded on the segmentation concept. It is different from a series LCR resonant circuit, and the resistor which symbolizes the dielectric loss is connected to the capacitor in parallel. If the cavities are formed by a short-circuited oversize waveguide, then the input admittance can be represented by the product of a coupling factor to the connected waveguide port and the equivalent admittance of the short-circuited waveguide. The transmission line model is effective even if lossy wall effect and dielectric partially-loading effect are considered. As a result, three-dimensional eigenmode parameters, such as the resonant frequency and the Q-factor, become dispensable and the computational complexity for the cavity simulation in the field of microwave heating is dramatically reduced.

  • Eigenmode Analysis of Propagation Constant for a Microstrip Line with Dummy Fills on a Si CMOS Substrate

    Yuya ONO  Takuichi HIRANO  Kenichi OKADA  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER

      Vol:
    E94-C No:6
      Page(s):
    1008-1015

    In this paper we present eigenmode analysis of the propagation constant for a microstrip line with dummy fills on a Si CMOS substrate. The effect of dummy fills is not negligible, particularly in the millimeter-wave band, although it has been ignored below frequencies of a few GHz. The propagation constant of a microstrip line with a periodic structure on a Si CMOS substrate is analyzed by eigenmode analysis for one period of the line. The calculated propagation constant and characteristic impedance were compared with measured values for a chip fabricated by the 0.18 µm CMOS process. The agreement between the analysis and measurement was very good. The dependence of loss on the arrangement of dummy fills was also investigated by eigenmode analysis. It was found that the transmission loss becomes large when dummy fills are arranged at places where the electromagnetic field is strong.

  • Moment Method Analysis of a Plane Wave Generator in an Oversized Rectangular Waveguide

    Takafumi KAI  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E90-B No:1
      Page(s):
    105-113

    This paper presents moment method analysis of a plane wave generator in an oversized rectangular waveguide; its finite size is taken into account. Power divisions of the series of coupling windows and eigenmode excitation coefficients in the oversized waveguide are quantitatively evaluated by the analysis. In order to have a better understanding of array design, the relation between these mode coefficients and the radiation patterns is discussed. Control of the mode coefficients in the oversized waveguide is directly related to the far-field radiation pattern synthesis. These calculated results are verified by measurements in the 61.25 GHz band.

  • Experiments on a MIMO System Having Dual Polarization Diversity Branches

    Nirmal Kumar DAS  Masahiro SHINOZAWA  Norihisa MIYADAI  Tetsuki TANIGUCHI  Yoshio KARASAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:9
      Page(s):
    2522-2529

    This paper introduces a novel MIMO (Multiple Input Multiple Output) communication system having orthogonal dual polarization diversity branches. We have designed a dual polarized circular patch antenna which has two orthogonal polarization ports such as vertical polarization (V) and horizontal polarization (H) on its metal surface. This design makes it works as two independent antennas in multipath environments. By using two dual polarized antennas at both the transmitter and receiver, we designed a dual-polarization 44 MIMO experiment system. This system can be used to investigate the performance of various MIMO transmission methods as well as the performance of adaptive algorithms in indoor multipath environments. To investigate the performance of our experiment system, we carried out a number of MIMO transmission experiments such as space-time-coded transmission having two parallel streams and MIMO eigenmode transmission. We will show the results of those experiments and discuss the advantages of using polarization diversity in MIMO communication system for next generation broadband wireless communication.

  • Space-Path Division Multiplexing Technique for Eigenmode Transmission System

    Shinsuke IBI  Seiichi SAMPEI  Norihiko MORINAGA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:6
      Page(s):
    1960-1963

    This paper proposes a multiple-input multiple-output (MIMO) eigenmode transmission technique which transmits different data streams on eigenmodes of different multi-path components while suppressing intra and inter-eigenmode interferences by means of a turbo equalization technique. This paper also evaluates the effectiveness of the proposed system in frequency selective fading conditions. Computer simulation results confirms the proposed technique is effective even in high spatial correlation cases.

  • A Design of a Leaky Waveguide Crossed-Slot Linear Array with a Matching Element by the Method of Moments with Numerical-Eigenmode Basis Functions

    Takuichi HIRANO  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E88-B No:3
      Page(s):
    1219-1226

    A waveguide crossed-slot linear array with a matching element is accurately analyzed and designed by the method of moments using numerical-eigenmode basis functions developed by the authors. The rounded ends of crossed-slots are accurately modeled in the analysis. The initial values of the slot parameters determined by a model with assumption of periodicity of field are modified and refined by the full-wave finite-array analysis for uniform excitation and small axial ratio. As an example, an 8-element linear array is designed at 11.85 GHz, which radiates a circularly polarized wave at a beam-tilting angle of 50 degrees. The radiation pattern, the frequency characteristics of the reflection and the axial ratio are compared between the analysis and the measurement and they agree very well. The calculated and measured axial ratio at the beam direction are 0.1 dB and 1.7 dB, respectively. This method provides a basic and powerful design tool for slotted waveguide arrays.

  • Analysis of a Waveguide with a Round-Ended Wide Straight Slot by the Method of Moments Using Numerical-Eigenmode Basis Functions

    Miao ZHANG  Takuichi HIRANO  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antenna and Propagation

      Vol:
    E87-B No:8
      Page(s):
    2319-2326

    A round-ended wide straight slot cut in the broad wall of a rectangular waveguide is analyzed by the Method of Moments (MoM) using numerical eigenmode basis functions derived by the edge-based finite element method (FEM), referred to as MoM/FEM. The frequency characteristics of the calculated transmission coefficients are compared with the measured ones, and good agreement is observed for a wide variety of antenna parameters. For simpler analysis that does not use MoM/FEM, an equivalent rectangular slot approximation for a round-ended slot is discussed. The resonant frequencies of empirically introduced "equal-area" and "equal-perimeter" slots are compared with those of round-ended slots for a wide variety of parameters such as slot width, wall thickness and dielectric constant inside the waveguide. Based upon MoM/FEM, which can be a reliable reference, it is found that the equal-area slot always gives a better approximation of the order of 1% over that of the equal-perimeter one which is of the order of 5%. For higher accuracy, a new rectangular slot approximation of a round-ended slot is proposed to be a linear combination of equal-area and equal perimeter approximation. The error is around 0.25% for a wide variety of parameters such as slot width-to-length ratio, wall thickness and dielectric constant of the filling material inside the waveguide.

  • Performance Analysis of MIMO Eigenmode Transmission System under Realistic Channel and System Conditions

    Seeho TING  Kei SAKAGUCHI  Kiyomichi ARAKI  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:8
      Page(s):
    2222-2232

    Multi-Input Multi-Output (MIMO) systems, which utilize multiple antennas at both the receiver and transmitter, promise very high data rates in a rich scattering environment. It was proven in literature that with optimal power allocation, MIMO eigenmode transmission system (EMTS) is optimal because MIMO capacity is maximized. However, the performance of MIMO EMTS is very sensitive to the accuracy of channel state information and thus it is of practical importance to analyze its performance when channel state information is corrupted under realistic system and propagation conditions. In this paper, we lower bound the mutual information of MIMO EMTS with imperfect channel estimation and delayed quantized feedback in a spatially correlated continuous fading channel. Our results showed that this lower bound is tight and can serve as a comprehensive guide to the actual performance of MIMO EMTS under practical operating conditions.

  • A Radial Line Slot Antenna Fed by a Rectangular Waveguide through a Crossed Slot

    Kaoru SUDO  Takuichi HIRANO  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antenna and Propagation

      Vol:
    E86-B No:10
      Page(s):
    3063-3070

    A rectangular-to-radial waveguide transformer through a crossed slot is proposed as a feeder of a radial line slot antenna (RLSA) for use in a system of solar power satellite (SPS). The transformer is analyzed and designed by using the MoM with numerical eigenmode basis functions. The measured ripple of the amplitude is 3.0 dB in the φ-direction and a 7.0% frequency bandwidth for rotating mode with the ripple below 6 dB is obtained. This bandwidth is wider than that of conventional ring slot or cavity resonator with a coaxial feeder. The antenna measurements at 5.8 GHz show reasonable rotational symmetry both in the near-field distribution and the far field radiation patterns. The reflection is -27.7 dB at the design frequency and below -15 dB in the 7.0% bandwidth. The gain of the antenna with the diameter of 300 mm is 22.7 dBi and the efficiency is 56%.

  • Microwave Simulator Based on the Finite-Element Method by Use of Commercial Tools

    Koichi HIRAYAMA  Yoshio HAYASHI  Masanori KOSHIBA  

     
    PAPER-Electromagnetics Simulation Techniques

      Vol:
    E84-C No:7
      Page(s):
    905-913

    Making up a microwave simulator is tried, which has an analysis method based on the finite-element method as a solver and commercial tools as a pre- and post-processor of a graphical user interface. The platform of this simulator is Windows, but, since the codes and configuration files to be created are common on Windows, Unix, and Linux, the simulator running on any platform may be made up at the same time, except a document on which all the commands of the simulator are embedded and executable. Using the simulator, the transmission properties of a 2- and 3-D waveguide discontinuity in a microwave circuit and eigenmodes of a 2- and 3-D waveguide are analyzed, and the computed results are presented in graphs of S parameters and plots of the electric field distribution.

  • Solution of the Eigenmode Problem for an Open Generalized Transmission Line by Domain Product Technique

    Vitaliy CHUMACHENKO  Olexandr KRAPYVNY  Vladimir ZASOVENKO  

     
    PAPER

      Vol:
    E80-C No:11
      Page(s):
    1476-1481

    In this paper an algorithm for numerical investigation of the transmission line having a generalized polygonal cross-section and open interface is proposed. Solution of the eigenmode problem is based on the method called the domain product technique, which employs a Mathieu function expansion and provides an efficient technique to the analysis of the structures with multiangular boundaries. An agreement at the obtained numerical results with existing data confirms the applicability of the theoretical analysis given in the paper.

  • Eigenmode Analysis of Whispering Gallery Modes of Pillbox-Type Optical Resonators Utilizing the FE-BPM Formulation

    Anis AHMED  Ryuichi KOYA  Osami WADA  Ming WANG  Ryuji KOGA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E78-C No:11
      Page(s):
    1638-1645

    To evaluate the radial eigenmode field distributions and the resonance wavelengths of axially symmetric pillbox resonator, a numerical method is described which is based on the FE-BPM expression in cylindrical coordinates. Under the weakly guiding approximation, we solve Fresnel equation and can get a fairly accurate result. By using effective index method, 3-D pillbox guiding structure is reduced to 2-D one which is then used for the analysis. One advantage of this method is that it is applicable for the axially symmetric optical waveguides with arbitrary index distribution. The validity of this method is checked by comparing the results of this method with those of the analytical ones. This method is applied for the evaluation of the coupling properties of a coupled structure consisting of a pillbox resonator and a curved waveguide placed outside the pillbox. This coupled structure has a good prospect to be used as optical wavelength filter. By varying the separation distance between the pillbox and the outer curved waveguide, the power transfer due to coupling is determined near the resonance wavelength 0.9 µm.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.