Keyword Search Result

[Keyword] low-voltage(73hit)

41-60hit(73hit)

  • Reconfigurable Logic Family Based on Floating Gates

    Luis Fortino CISNEROS-SINENCIO  Alejandro DIAZ-SANCHEZ  Jaime RAMIREZ-ANGULO  

     
    PAPER

      Vol:
    E87-C No:11
      Page(s):
    1884-1888

    Reconfigurable logic circuitry has special importance because the popularity of Field Programmable Gate Arrays (FPGA) based applications. A reconfigurable logic based on FGMOS transistors, where a single stage can perform binary operations as well as state machines, is presented. The use of the proposed logic allows the integration of several stages into a single chip because their small area requirement, low voltage and low power characteristics.

  • Low-Voltage and Low-Power CMOS Voltage-to-Current Converter

    Weihsing LIU  Shen-Iuan LIU  

     
    LETTER

      Vol:
    E87-C No:6
      Page(s):
    1029-1032

    A CMOS voltage-to-current converter in weak inversion is presented in this Letter. It can operate for low supply voltage and its power consumption is also low. As the input voltage varies from -0.15 V to 0.15 V, the measured maximum linearity error for the proposed voltage-to-current converter, is about 3.35%. Its power consumption is only 26 µW under the supply voltage of 2 V. The proposed voltage-to-current converter has been fabricated in a 0.5 µm N-well CMOS 2P2M process. The proposed circuit is expected to be useful in analog signal processing applications.

  • Low-Voltage Sigma-Delta Modulator Topologies for Broadband Communications Applications

    Mohammad YAVARI  Omid SHOAEI  Francesco SVELTO  

     
    PAPER

      Vol:
    E87-C No:6
      Page(s):
    964-975

    This paper presents a novel class of sigma-delta modulator topologies for low-voltage, high-speed, and high-resolution applications with low oversampling ratios (OSRs). The main specifications of these architectures are the reduced analog circuit requirements, large out-of-band gain in the noise transfer function (NTF) without any stability concerns to achieve high signal to noise ratio (SNR) with a low OSR, and unity-gain signal transfer function (STF) to reduce the harmonic distortions resulted from the analog circuit imperfections. To demonstrate the efficiency of the proposed modulator architectures a prototype with HSPICE is implemented. A low-power two-stage class A/AB OTA with modified common mode feedback (CMFB) circuit in the first stage is used to implement the fourth order modulator. Simulation results with OSR of 16 give signal to noise plus distortion ratio (SNDR) and dynamic range (DR) of 90-dB and 92.5-dB including the circuit noise in the 1.25-MHz signal bandwidth, respectively. The circuit is implemented in a 0.13-µm standard CMOS technology. It dissipates about 40-mW from a single 1.2-V power supply voltage.

  • +3 V/-3 V Operation 1.2 Gbps Write Driver for Hard Disk Drives

    Yasuyuki OKUMA  Kenji MAIO  Hiroyasu YOSHIZAWA  

     
    PAPER

      Vol:
    E87-C No:4
      Page(s):
    578-581

    This paper describes low voltage write driver with pulse adding circuit. The presented write driver is constructed from the main switch circuit with impedance matching and pulse adding circuits and a timing generator. The main switch circuit is voltage type driver with matching resisters for flexible lines between a write driver and a write head. For 1.2 Gbps operation, the flexible lines have to be treated as transmission lines. Furthermore, to achieve steep rise/fall edge, the pulse adding circuits to generate double of supply voltage, +3.3/-3 V, at rise/fall edge have been developed. The write driver was implemented using 0.35 µm BiCMOS process. The die size is 1.2 mm0.6 mm and the measured results achieved tr/tf of less than 0.25 ns, tp of 0.5 ns and Ip of 73 mA.

  • Low-Voltage CMOS Voltage-Mode Divider and Its Application

    Weihsing LIU  Shen-Iuan LIU  

     
    PAPER

      Vol:
    E87-A No:2
      Page(s):
    330-334

    A CMOS voltage-mode divider, which can operate for low supply voltage and low power dissipation, is presented in this paper. The proposed voltage-mode divider can be used to realize a pseudo-exponential function generator. The experimental results of the proposed voltage-mode divider show that, under the supply voltage VDD=2.5 V, the linearity error is less than 1.18% and the power consumption is only 102 µW. Also the proposed pseudo-exponential function generator exhibits a 15 dB output dynamic range and the linear error is less than1.54%. Both the proposed circuits have been fabricated in a 0.5 µm N-well CMOS 2P2M process. The proposed circuits are expected to be useful in analog signal processing applications.

  • The Design of a 2.7 V, 200 MS/s, and 14-Bit CMOS D/A Converter with 63 dB of SFDR Characteristics for the 90 MHz Output Signal

    Hiroki SAKURAI  Yasuhiro SUGIMOTO  

     
    PAPER

      Vol:
    E86-C No:6
      Page(s):
    1077-1084

    This paper describes the design of a 2.7 V operational, 200 MS/s, 14-bit CMOS D/A converter (DAC). The DAC consists of 63 current cells in matrix form for an upper 6-bit sub-DAC, and 8 current cells and R-2R ladder resistors for a lower 8-bit sub-DAC. A source degeneration resistor, for which a transistor in the triode operational region is used, is connected to the source of a MOS current source transistor in a current cell in order to reduce the influence of threshold voltage (Vth) variation and to satisfy the differential nonlinearity error specification as a 14-bit DAC. In conventional high-speed and high-resolution DACs that have the same design specifications described here, spurious-free dynamic range (SFDR) characteristics commonly deteriorate drastically as the frequency of the reconstructed waveform increases. The causes of this deterioration were carefully examined in the present study, finding that the deterioration is caused in part by the input-data-dependent time-constant change at the output terminal. Unexpected current flow in parasitic capacitors associated with current sources causes the change in the output current depending on the input data, resulting in time-constant change. In order to solve this problem, we propose a new output circuit to fix the voltage at the node where the outputs of the current sources are combined. SPICE circuit simulation demonstrates that 63 dB of SFDR characteristics for the 90 MHz reconstructed waveform at the output can be realizable when the supply voltage is 2.7 V, the clock rate is 200 MS/s, and the power dissipation is estimated to be 300 mW.

  • A Paired MOS Charge Pump for Low Voltage Operation

    Jin-Hyeok CHOI  Seong-Ik CHO  Mu-Hun PARK  Young-Hee KIM  

     
    PAPER-Electronic Circuits

      Vol:
    E86-C No:5
      Page(s):
    859-863

    We present a new multi-stage charge pump that is suitable for low-voltage operation, and in particular for low voltage flash memory. Compare to the Dickson charge pump and previously reported modified Dickson charge pumps, the proposed charge pump offers the improved pumping voltage gains. The proposed charge pump is composed of a pair of pumps and utilizes the internal boosted voltages of one side of the paired pumps as the charge transferring voltages to the other side. The simulated and measured results indicate that the proposed pump is highly efficient in overcoming both the pumping gain decrease and the current driving capability degradation caused by the threshold voltage of the charge-transfer gate.

  • Realization of Leapfrog Filters Using Current Differential Buffered Amplifiers

    Worapong TANGSRIRAT  Wanlop SURAKAMPONTORN  Nobuo FUJII  

     
    PAPER

      Vol:
    E86-A No:2
      Page(s):
    318-326

    In this paper, is shown an approach to realize leapfrog structures obtained from proto-type passive RLC ladder filters using current differencing buffered amplifiers (CDBA) as active elements. The use of the CDBA's provides advantages that the realization procedure is simplified and the number of active components required is reduced. The approach is quite suitable for the realization of band-pass ladder filters, which generally requires a complicated structure to simulate LC series and/or parallel resonant branches by the conventional opamp-based leapfrog filters. A simple circuit configuration of the CDBA suitable for high frequency and low power supply voltage applications is also presented. As design examples, a fifth-order Butterworth lowpass ladder filter and a sixth-order Chebyshev bandpass ladder filter are designed. The effectiveness and the correctness of the proposed approach and the characteristics of the proposed filters are verified and examined through computer simulation.

  • Low-Power and Low-Voltage Analog Circuit Techniques towards the 1 V Operation of Baseband and RF LSIs

    Yasuhiro SUGIMOTO  

     
    INVITED PAPER

      Vol:
    E85-C No:8
      Page(s):
    1529-1537

    This paper describes low-power and low-voltage analog circuit techniques applicable to deep sub-micron LSIs in baseband and RF signal processing. The trends indicate that reductions in the supply voltage are inevitable, that power dissipation will not become sufficiently low, and that performance will improve continuously. Some circuit techniques currently being used to achieve these goals are reviewed. Next, three trial approaches are introduced. The first of these is a 1 V operational video-speed CMOS sample-and-hold IC. The second is a 1 V operational high-frequency CMOS VCO circuit. Finally, a step-down DC-DC converter IC with a 1 V output and a greater than 80% power efficiency is introduced. These approaches prove that the low-power and low-voltage operation of analog circuits can be realized without sacrificing performance.

  • Low-Voltage Linear Bipolar OTAs Employing Hyperbolic Circuits with an Intermediate Voltage Terminal

    Fujihiko MATSUMOTO  Hiroki WASAKI  Yasuaki NOGUCHI  

     
    PAPER

      Vol:
    E85-A No:6
      Page(s):
    1200-1208

    This paper proposes design of new linear bipolar OTAs using hyperbolic circuits with an intermediate voltage terminal. Four types of the OTAs are presented; two OTAs contain a hyperbolic sine circuit and the other two OTAs employ a hyperbolic cosine circuit. The linear input voltage range of the proposed OTAs is wider than that of the well-known conventional OTA, multi-TANH doublet, while each proposed OTA has advantages, such as low power dissipation, high-frequency characteristics and so on. The results of SPICE simulation show that satisfactory characteristics are obtained.

  • An IDDQ Sensor Driven by Abnormal IDDQ

    Yukiya MIURA  

     
    PAPER-Fault Tolerance

      Vol:
    E83-D No:10
      Page(s):
    1860-1867

    This paper describes a novel IDDQ sensor circuit that is driven by only an abnormal IDDQ. The sensor circuit has relatively high sensitivity and can operate at a low supply voltage. Based on a very simple idea, it requires two additional power supplies. It can operate at either 5-V or 3.3-V VDD with the same design. Simulation results show that it can detect a 16-µA abnormal IDDQ at 3.3-V VDD. This sensor circuit causes a smaller voltage drop and smaller performance penalty in the circuit under test than other ones.

  • Novel Low-Voltage Linear OTAs Employing Hyperbolic Function Circuits

    Fujihiko MATSUMOTO  Yasuaki NOGUCHI  

     
    PAPER

      Vol:
    E83-A No:6
      Page(s):
    956-964

    In this paper, new linearization techniques for low-voltage bipolar OTAs using hyperbolic function circuits are described. First, a design of an exponential-law circuit, which is a basic building block to compose hyperbolic sine and hyperbolic cosine circuits, is proposed. This circuit is simpler than the conventional circuit and is suitable for low-voltage application. Next, two linearized OTAs using the hyperbolic function circuits are presented. The transconductance is given by maximally flat approximation. Although designs of the OTAs are different, the output currents are given by the same expression. Finally, performance of the OTAs is discussed. The linear input voltage range of the proposed OTAs is almost the same as that of the conventional OTA. However, one of the proposed OTA has no more than two-thirds the power dissipation of the conventional one. The other has a superior high-frequency characteristic.

  • A 10-bit 3-Msample/s CMOS Multipath Multibit Cyclic ADC

    Tatsuji MATSUURA  Akihiro KITAGAWA  Toshiro TSUKADA  Eiki IMAIZUMI  

     
    PAPER

      Vol:
    E83-C No:2
      Page(s):
    227-235

    A 10-bit 3-Msample/s multibit cyclic A/D converter for mixed-signal LSIs with a small chip-area of 1.5 mm2 and low power consumption of 10.8 mW with a 2.7-V power supply was realized using a 0.8-µm CMOS process. This ADC module is designed for high-speed servo-controller LSIs used in hard-disk-drive systems. We found that three-cycle cyclic conversion (four bit, three bit+(one redundant bit), and three bit+(one redundant bit)) was optimal for achieving 10-bit resolution with a small chip-area and low power consumption given a required conversion time of 0.33 µs. Our multipath architecture cut power consumption by 30% compared to conventional cyclic A/D converters. By adding one signal path between the residue amplifier and the four bit subADC, the settling timing requirement can be relaxed, and the amplifier's power consumption thus reduced.

  • Energy-Reduction Effect of Ultralow-Voltage MTCMOS/SIMOX Circuits Using a Graph with Equispeed and Equienergy Lines

    Takakuni DOUSEKI  Toshishige SHIMAMURA  Koji FUJII  Junzo YAMADA  

     
    PAPER

      Vol:
    E83-C No:2
      Page(s):
    212-219

    This paper describes the effect of lowering the supply voltage and threshold voltages on the energy reduction of an ultralow-voltage multi-threshold CMOS/SIMOX (MTCMOS/SIMOX) circuit. The energy dissipation is evaluated using a graph with equispeed and equienergy lines on a supply voltage and a threshold voltage plane. In order to draw equispeed and equienergy lines for ultralow-voltage circuits, we propose a modified energy-evaluation model taking into account a input-waveform transition-time of the circuits. The validity of the proposed energy-evaluation model is confirmed by the evaluation of a gate-chain TEG and a 16-bit CLA adder fabricated with 0.25-µm MTCMOS/SIMOX technology. Using the modified model, the energy-reduction effect in lowering the supply voltage is evaluated for a single-Vth fully-depleted CMOS/SOI circuit, a dual-Vth CMOS circuit consisting of fully-depleted low- and medium-Vth MOSFETs, and a triple-Vth MTCMOS/SIMOX circuit. The evaluation reveals that lowering the supply voltage of the MTCMOS/SIMOX circuit to 0.5 V is advantageous for the energy reduction at a constant operating speed.

  • A Novel Zero-Voltage-Switched Half-Bridge Converter with Active Current-Clamped Transformer

    Koji YOSHIDA  Tamotsu NINOMIYA  

     
    PAPER-Power Supply

      Vol:
    E81-B No:12
      Page(s):
    2544-2552

    A novel zero-voltage-switched half-bridge converter is proposed. This converter achieves the zero-voltage switching while maintaining a constant frequency PWM control. Then the power conversion of high efficiency and low noise is realized at a higher switching frequency. In the experiment, a high efficiency of 83% is achieved for a low output voltage of 3.3 V, an output current of 30 A, and an input-voltage range of 200 to 400 V at the switching frequency of 400 kHz.

  • A Realization of a Low-Voltage Differential-Output OTA Using a Simple CM Amplifier

    Fujihiko MATSUMOTO  Yasuaki NOGUCHI  

     
    LETTER

      Vol:
    E81-A No:2
      Page(s):
    261-264

    A technique for realization of low-voltage OTAs is presented in this letter. A very low-voltage differential-output OTA is realized by employing a new common-mode amplifier in the common-mode feedback circuit. The results of PSpice simulations are shown. The proposed OTA can operate at a 0. 9 V supply voltage.

  • A BiCMOS Circuit Using a Base-Boost Technique for Low-Voltage, Low-Power Application

    Kenichi OHHATA  Hiroaki NAMBU  Kazuo KANETANI  Toru MASUDA  Takeshi KUSUNOKI  Noriyuki HOMMA  

     
    PAPER

      Vol:
    E79-C No:12
      Page(s):
    1658-1665

    BiCMOS circuits using a base-boost technique for low-voltage application have been proposed. These circuits can operate at supply voltages down to 1.5 V. Their power dissipation, however, is 1.5-2 times of that of the CMOS circuit. We propose a novel BiCMOS circuit dissipating less power than that of conventional circuits. A base-boost technique is a key to low-voltage operation, and a gate holding the output voltage and a depletion nMOS pre-charge transistor are also introduced to reduce the power dissipation. Results of simulations using 0.3µm BiCMOS device parameters show that base-boosted BiNMOS (BB-BiNMOS) circuit is 1.5 times faster than CMOS circuit even at 1 V and that its power dissipation is almost the same power as that of a CMOS circuit, the base-boosted BiCMOS (BB-BiCMOS) circuit is twice as fast and dissipates only 1.2 times as much power. The energy-delay product of the BB-BiCMOS circuit is smaller than that of conventional BiCMOS circuits and is about half of that of a CMOS circuit, the BB-BiCMOS circuit is thus the most promising high-speed circuits for low-voltage and low-power applications.

  • Low-Voltage Analog Circuit Techniques for Baseband Interfaces

    Yasuyuki MATSUYA  

     
    INVITED PAPER

      Vol:
    E79-C No:12
      Page(s):
    1650-1657

    We describe low supply voltage analog circuit techniques for voice- and audio-band interfaces. These techniques can lower the supply voltage to 1 V, which is the voltage of a one-NiCd-cell battery. We have applied them in a swingsuppression noise-shaping method, and using this method, have fabricated A/D and D/A converters for the voice and audio bands. These converters operate with a 1 V power supply and have 13-bit and 17-bit accuracy in the audio-band and power consumption of about 1 mW. This performance proves that our techniques are sufficient for baseband analog interfaces.

  • A 1.2-V Feedforward Amplifier and A/D Converter for Mixed Analog/Digital LSIs

    Tatsuji MATSUURA  Eiki IMAIZUMI  Takanobu ANBO  

     
    PAPER

      Vol:
    E79-C No:12
      Page(s):
    1666-1678

    Very-low-voltage 1.2-V mixed-signal CMOS technology is a device/circuit solution aimed at ultra-low-power portable systems such as digital cellular terminals and PDAs. We have developed an experimental 1.2-V mixed analog and digital LSI circuit/device technology. This technology is based on a new transistor structure that has a 0.3-µm gate length and a low Vth of 0.4 V, and that suppresses the short-channel effect. In this paper, we will mainly discuss low-voltage analog circuit design that uses this technology. We show that low Vth is essential not only to digital circuits, but also to 1.2-V analog amplifier, A/D converter and analog switch designs. To achieve high-conversion rate A/D converters, a pipeline architecture is used for low-voltage operation. To increase the attainable gain-bandwidth of the operational amplifier of the converter, a feedforward phase-compensated three-stage amplifier is proposed. The addition of a feedforward capacitor allows a high frequency signal to pass directly to the second stage, which optimizes use of the second stage bandwidth. Pole-zero canceling is used to achieve a fast settling of the amplifier. Although gain precision is degraded by the positive feedback through the feedforward capacitor, this can be offset by increasing the equivalent second-stage gain with an inner feedforward compensated amplifier. The gain-bandwidth of the proposed double feedforward amplifier is two to three times wider than with the conventional Miller compensation. With these techniques, we used 1.2-V mixed-signal CMOS technology to create a basic logic gate with a 400-ps delay and 0.4-µW/MHz power, and a 9-bit 2-Msample/s pipeline A/D converter with power dissipation of only 4 mW.

  • Features of SOI DRAM's and their Potential for Low-Voltage and/or Giga-Bit Scale DRAM's

    Yasuo YAMAGUCHI  Toshiyuki OASHI  Takahisa EIMORI  Toshiaki IWAMATSU  Shouichi MITAMOTO  Katsuhiro SUMA  Takahiro TSURUDA  Fukashi MORISHITA  Masakazu HIROSE  Hideto HIDAKA  Kazutami ARIMOTO  Kazuyasu FUJISHIMA  Yasuo INOUE  Tadashi NISHIMURA  Hirokazu MIYOSHI  

     
    INVITED PAPER-Dynamic RAMs

      Vol:
    E79-C No:6
      Page(s):
    772-780

    SOI DRAM's are candidates for giga-bit scale DRAM's due to the inherent features of SOI structure, and are also desired to be used as low-voltage memories which will be used in portable systems in the forthcoming multimedia era. However, some drawbacks are also anticipated owing to floating substrate effects. In this report, the advantages and problems concerning SOI DRAM's were reconsidered by evaluation of our test devices and also by analysis with device and circuit simulators for their future prospects. The following advantages of SOI DRAM's were verified. Low-voltage operation, active current reduction and speed gain were obtained by the reduced junction capacitance and the back-gate-bias effect. Static refresh characteristics were improved due to the reduced junction area. Soft error immunity was improved greatly by the complete isolation of the active region when the body potential is fixed. The problems that need to be resolved are closely related to the floating substrate effect. The soft error immunity in a floating body condition and the dynamic refresh characteristics were degraded by the instability of the floating body potential. Process and device approaches such as the field-shield-body-fixing method as well as circuit approaches like the BSG scheme are required to eliminate the floating substrate effects. From these investigations it can be said that a low-voltage DRAM with a current design rule would be possible if we pay close attention to the floating-substrate-related issues by optimizing various process/device and circuit techniques. With further development of the technology to suppress the floating substrate effects, it will be possible to develop simple and low-cost giga-bit level SOI DRAM's which use the SOI's inherent features to the full.

41-60hit(73hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.