Keyword Search Result

[Keyword] memory(654hit)

201-220hit(654hit)

  • Nonvolatile Polymer Memory-Cell Embedded with Ni Nanocrystals Surrounded by NiO in Polystyrene

    HyunMin SEUNG  Jong-Dae LEE  Chang-Hwan KIM  Jea-Gun PARK  

     
    BRIEF PAPER

      Vol:
    E96-C No:5
      Page(s):
    699-701

    In summary, we successfully fabricated the nonvolatile hybrid polymer 4F2 memory-cell. It was based on bistable state, which was observed in PS layer that is containing a Ni nanocrystals capped with NiO tunneling barrier sandwiched by Al electrodes. The current conduction mechanism for polymer memory-cell was demonstrated by fitting the I-V curves. The electrons were charged and discharged on Ni nanocrystals by tunneling through the NiO tunneling barrier. In addition, the memory-cell showed a good and reproducible nonvolatile memory-cell characteristic. Its memory margin is about 1.410. The retention-time is more than 105 seconds and the endurance cycles of program-and-erase is more than 250 cycles. Furthermore, Thefore, polymer memory-cell would be good candidates for nonvolatile 4F2 cross-bar memory-cell.

  • A Low-Power LDPC Decoder for Multimedia Wireless Sensor Networks

    Meng XU  Xincun JI  Jianhui WU  Meng ZHANG  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E96-B No:4
      Page(s):
    939-947

    This paper presents a low-power LDPC decoder that can be used in Multimedia Wireless Sensor Networks. Three low power design techniques are proposed in the decoder design: a layered decoding algorithm, a modified Benes network and a modified memory bypassing scheme. The proposed decoder is implemented in TSMC 0.13 µm, 1.2 V CMOS process. Experiments show that when the clock frequency is 32 MHz, the power consumption of the proposed decoder is 38.4 mW, the energy efficiency is 53.3 pJ/bit/ite and the core area is 1.8 mm2.

  • A Low-Power Packet Memory Architecture with a Latency-Aware Packet Mapping Method

    Hyuk-Jun LEE  Seung-Chul KIM  Eui-Young CHUNG  

     
    LETTER-Computer System

      Vol:
    E96-D No:4
      Page(s):
    963-966

    A packet memory stores packets in internet routers and it requires typically RTTC for the buffer space, e.g. several GBytes, where RTT is an average round-trip time of a TCP flow and C is the bandwidth of the router's output link. It is implemented with DRAM parts which are accessed in parallel to achieve required bandwidth. They consume significant power in a router whose scalability is heavily limited by power and heat problems. Previous work shows the packet memory size can be reduced to , where N is the number of long-lived TCP flows. In this paper, we propose a novel packet memory architecture which splits the packet memory into on-chip and off-chip packet memories. We also propose a low-power packet mapping method for this architecture by estimating the latency of packets and mapping packets with small latencies to the on-chip memory. The experimental results show that our proposed architecture and mapping method reduce the dynamic power consumption of the off-chip memory by as much as 94.1% with only 50% of the packet buffer size suggested by the previous work in realistic scenarios.

  • Implementation of a Memory Disclosure Attack on Memory Deduplication of Virtual Machines

    Kuniyasu SUZAKI  Kengo IIJIMA  Toshiki YAGI  Cyrille ARTHO  

     
    PAPER-System Security

      Vol:
    E96-A No:1
      Page(s):
    215-224

    Memory deduplication improves the utilization of physical memory by sharing identical blocks of data. Although memory deduplication is most effective when many virtual machines with same operating systems run on a CPU, cross-user memory deduplication is a covert channel and causes serious memory disclosure attack. It reveals the existence of an application or file on another virtual machine. The covert channel is a difference in write access time on deduplicated memory pages that are re-created by Copy-On-Write, but it has some interferences caused by execution environments. This paper indicates that the attack includes implementation issues caused by memory alignment, self-reflection between page cache and heap, and run-time modification (swap-out, anonymous pages, ASLR, preloading mechanism, and self-modification code). However, these problems are avoidable with some techniques. In our experience on KSM (kernel samepage merging) with the KVM virtual machine, the attack could detect the security level of attacked operating systems, find vulnerable applications, and confirm the status of attacked applications.

  • Novel Fuse Scheme with a Short Repair Time to Maximize Good Chips per Wafer in Advanced SoCs

    Chizu MATSUMOTO  Yuichi HAMAMURA  Michinobu NAKAO  Kaname YAMASAKI  Yoshikazu SAITO  Shun'ichi KANEKO  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E96-C No:1
      Page(s):
    108-114

    Repairing embedded memories (e-memories) on an advanced system-on-chip (SoC) product is a key technique used to improve product yield. However, increasing the die area of SoC products equipped with various types of e-memories on the die is an issue. A fuse scheme can be used to resolve this issue. However, several fuse schemes that have been proposed to decrease the die area result in an increased repair time. Therefore, in this paper, we propose a novel fuse scheme that decreases both die area and repair time. Moreover, our approach is applied to a 65 nm SoC product. The results indicate that the proposed fuse scheme effectively decreases the die area and repair time of advanced SoC products.

  • Robust Lightweight Embedded Virtualization Layer Design with Simple Hardware Assistance

    Tsung-Han LIN  Yuki KINEBUCHI  Tatsuo NAKAJIMA  

     
    PAPER-Computer System and Services

      Vol:
    E95-D No:12
      Page(s):
    2821-2832

    In this paper, we propose a virtualization architecture for a multi-core embedded system to provide more system reliability and security while maintaining performance and without introducing additional special hardware supports or implementing a complex protection mechanism in the virtualization layer. Embedded systems, especially consumer electronics, have often used virtualization. Virtualization is not a new technique, as there are various uses for both GPOS (General Purpose Operating System) and RTOS (Real Time Operating System). The surge of the multi-core platforms in embedded systems also helps consolidate the virtualization system for better performance and lower power consumption. Embedded virtualization design usually uses two approaches. The first is to use the traditional VMM, but it is too complicated for use in the embedded environment without additional special hardware support. The other approach uses the microkernel, which imposes a modular design. The guest systems, however, would suffer from considerable modifications in this approach, as the microkernel allows guest systems to run in the user space. For some RTOSes and their applications originally running in the kernel space, this second approach is more difficult to use because those codes use many privileged instructions. To achieve better reliability and keep the virtualization layer design lightweight, this work uses a common hardware component adopted in multi-core embedded processors. In most embedded platforms, vendors provide additional on-chip local memory for each physical core, and these local memory areas are only private to their cores. By taking advantage of this memory architecture, we can mitigate the above-mentioned problems at once. We choose to re-map the virtualization layer's program on the local memory, called SPUMONE, which runs all guest systems in the kernel space. Doing so, it can provide additional reliability and security for the entire system because the SPUMONE design in a multi-core platform has each instance installed on a separate processor core. This design differs from traditional virtualization layer design, and the content of each SPUMONE is inaccessible to the others. We also achieve this goal without adding overhead to the overall performance.

  • Analysis of Error Floors for Non-binary LDPC Codes over General Linear Group through q-Ary Memoryless Symmetric Channels

    Takayuki NOZAKI  Kenta KASAI  Kohichi SAKANIWA  

     
    PAPER-Coding Theory

      Vol:
    E95-A No:12
      Page(s):
    2113-2121

    In this paper, we compare the decoding error rates in the error floors for non-binary low-density parity-check (LDPC) codes over general linear groups with those for non-binary LDPC codes over finite fields transmitted through the q-ary memoryless symmetric channels under belief propagation decoding. To analyze non-binary LDPC codes defined over both the general linear group GL(m, F2) and the finite field F2m, we investigate non-binary LDPC codes defined over GL(m3, F2m4). We propose a method to lower the error floors for non-binary LDPC codes. In this analysis, we see that the non-binary LDPC codes constructed by our proposed method defined over general linear group have the same decoding performance in the error floors as those defined over finite field. The non-binary LDPC codes defined over general linear group have more choices of the labels on the edges which satisfy the condition for the optimization.

  • The Expected Write Deficiency of Index-Less Indexed Flash Codes

    Yuichi KAJI  

     
    PAPER-Coding Theory

      Vol:
    E95-A No:12
      Page(s):
    2130-2138

    The expected write deficiency of the index-less indexed flash codes (ILIFC) is studied. ILIFC is a coding scheme for flash memory, and consists of two stages with different coding techniques. This study investigates the write deficiency of the first stage of ILIFC, and shows that omitting the second stage of ILIFC can be a practical option for realizing flash codes with good average performance. To discuss the expected write deficiency of ILIFC, a random walk model is introduced as a formalization of the behavior of ILIFC. Based on the random walk model, two different techniques are developed to estimate the expected write deficiency. One technique requires some computation, but gives very precise estimation of the write deficiency. The other technique gives a closed-form formula of the write deficiency under a certain asymptotic scenario.

  • Self-Organizing Incremental Associative Memory-Based Robot Navigation

    Sirinart TANGRUAMSUB  Aram KAWEWONG  Manabu TSUBOYAMA  Osamu HASEGAWA  

     
    PAPER-Information Network

      Vol:
    E95-D No:10
      Page(s):
    2415-2425

    This paper presents a new incremental approach for robot navigation using associative memory. We defined the association as node→action→node where node is the robot position and action is the action of a robot (i.e., orientation, direction). These associations are used for path planning by retrieving a sequence of path fragments (in form of (node→action→node) → (node→action→node) →…) starting from the start point to the goal. To learn such associations, we applied the associative memory using Self-Organizing Incremental Associative Memory (SOIAM). Our proposed method comprises three layers: input layer, memory layer and associative layer. The input layer is used for collecting input observations. The memory layer clusters the obtained observations into a set of topological nodes incrementally. In the associative layer, the associative memory is used as the topological map where nodes are associated with actions. The advantages of our method are that 1) it does not need prior knowledge, 2) it can process data in continuous space which is very important for real-world robot navigation and 3) it can learn in an incremental unsupervised manner. Experiments are done with a realistic robot simulator: Webots. We divided the experiments into 4 parts to show the ability of creating a map, incremental learning and symbol-based recognition. Results show that our method offers a 90% success rate for reaching the goal.

  • Process Scheduling Based Memory Energy Management for Multi-Core Mobile Devices

    Tiefei ZHANG  Tianzhou CHEN  

     
    PAPER-Systems and Control

      Vol:
    E95-A No:10
      Page(s):
    1700-1707

    The energy consumption is always a serious problem for mobile devices powered by battery. As the capacity and density of off-chip memory continuous to scale, its energy consumption accounts for a considerable amount of the whole system energy. There are therefore strong demands for energy efficient techniques towards memory system. Different from previous works, we explore the different power management modes of the off-chip memory by process scheduling for the multi-core mobile devices. In particular, we schedule the processes based on their memory access characteristics to maximize the number of the memory banks being in low power mode. We propose a fast approximation algorithm to solve the scheduling process problem for the dual-core mobile device. And for those equipped with more than two cores, we prove that the scheduling process problem is NP-Hard, and propose two heuristic algorithms. The proposed algorithms are evaluated through a series of experiments, for which we have encouraging results.

  • An FPGA-Based Information Detection Hardware System Employing Multi-Match Content Addressable Memory

    Duc-Hung LE  Katsumi INOUE  Masahiro SOWA  Cong-Kha PHAM  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E95-A No:10
      Page(s):
    1708-1717

    A new information detection method has been proposed for a very fast and efficient search engine. This method is implemented on hardware system using FPGA. We take advantages of Content Addressable Memory (CAM) which has an ability of matching mode for designing the system. The CAM blocks have been designed using available memory blocks of the FPGA device to save access times of the whole system. The entire memory can return multi-match results concurrently. The system operates based on the CAMs for pattern matching, in a parallel manner, to output multiple addresses of multi-match results. Based on the parallel multi-match operations, the system can be applied for pattern matching with various required constraint conditions without using any search principles. The very fast multi-match results are achieved at 60 ns with the operation frequency 50 MHz. This increases the search performance of the information detection system which uses this method as the core system.

  • Memory Efficient Set Partitioning in Hierarchical Tree (MESH) for Wavelet Image Compression

    Farid GHANI  Abdul KADER  Ekram KHAN  Badlishah AHMAD  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E95-B No:9
      Page(s):
    2906-2913

    This paper presents a memory efficient version of set partitioning in hierarchical tree (SPIHT). The proposed coder called Memory Efficient SPIHT (MESH) uses a single re-usable list instead of three continuously growing linked lists as in conventional SPIHT. The list is re-initialized at the beginning of each bit-plane (coding pass) and is exhausted within the same bit-plane. Another feature of the proposed coder is that it uses a single pass for each bit-plane by merging the sorting and refinement passes of the conventional version of SPIHT. The performance of the proposed coder is measured in terms of coding efficiency, and the worst case dynamic memory requirements due to the list entries in each bit-plane. Performance comparison with SPIHT shows that the proposed coder reduces the dynamic memory requirement by about 50–70% compared to the SPIHT while retaining its coding efficiency.

  • Sparsely Encoded Hopfield Model with Unit Replacement

    Ryota MIYATA  Koji KURATA  Toru AONISHI  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E95-D No:8
      Page(s):
    2124-2132

    We investigate a sparsely encoded Hopfield model with unit replacement by using a statistical mechanical method called self-consistent signal-to-noise analysis. We theoretically obtain a relation between the storage capacity and the number of replacement units for each sparseness a. Moreover, we compare the unit replacement model with the forgetting model in terms of the network storage capacity. The results show that the unit replacement model has a finite value of the optimal sparseness on an open interval 0 (1/2 coding) < a < 1 (the limit of sparseness) to maximize the storage capacity for a large number of replacement units, although the forgetting model does not.

  • A Low-Cost and Energy-Efficient Multiprocessor System-on-Chip for UWB MAC Layer

    Hao XIAO  Tsuyoshi ISSHIKI  Arif Ullah KHAN  Dongju LI  Hiroaki KUNIEDA  Yuko NAKASE  Sadahiro KIMURA  

     
    PAPER-Computer System

      Vol:
    E95-D No:8
      Page(s):
    2027-2038

    Ultra-wideband (UWB) technology has attracted much attention recently due to its high data rate and low emission power. Its media access control (MAC) protocol, WiMedia MAC, promises a lot of facilities for high-speed and high-quality wireless communication. However, these benefits in turn involve a large amount of computational load, which challenges the traditional uniprocessor architecture based implementation method to provide the required performance. However, the constrained cost and power budget, on the other hand, makes using commercial multiprocessor solutions unrealistic. In this paper, a low-cost and energy-efficient multiprocessor system-on-chip (MPSoC), which tackles at once the aspects of system design, software migration and hardware architecture, is presented for the implementation of UWB MAC layer. Experimental results show that the proposed MPSoC, based on four simple RISC processors and shared-memory infrastructure, achieves up to 45% performance improvement and 65% power saving, but takes 15% less area than the uniprocessor implementation.

  • Dynamical Associative Memory: The Properties of the New Weighted Chaotic Adachi Neural Network

    Guangchun LUO  Jinsheng REN  Ke QIN  

     
    LETTER-Biocybernetics, Neurocomputing

      Vol:
    E95-D No:8
      Page(s):
    2158-2162

    A new training algorithm for the chaotic Adachi Neural Network (AdNN) is investigated. The classical training algorithm for the AdNN and it's variants is usually a “one-shot” learning, for example, the Outer Product Rule (OPR) is the most used. Although the OPR is effective for conventional neural networks, its effectiveness and adequateness for Chaotic Neural Networks (CNNs) have not been discussed formally. As a complementary and tentative work in this field, we modified the AdNN's weights by enforcing an unsupervised Hebbian rule. Experimental analysis shows that the new weighted AdNN yields even stronger dynamical associative memory and pattern recognition phenomena for different settings than the primitive AdNN.

  • FPS-RAM: Fast Prefix Search RAM-Based Hardware for Forwarding Engine

    Kazuya ZAITSU  Koji YAMAMOTO  Yasuto KURODA  Kazunari INOUE  Shingo ATA  Ikuo OKA  

     
    PAPER-Network System

      Vol:
    E95-B No:7
      Page(s):
    2306-2314

    Ternary content addressable memory (TCAM) is becoming very popular for designing high-throughput forwarding engines on routers. However, TCAM has potential problems in terms of hardware and power costs, which limits its ability to deploy large amounts of capacity in IP routers. In this paper, we propose new hardware architecture for fast forwarding engines, called fast prefix search RAM-based hardware (FPS-RAM). We designed FPS-RAM hardware with the intent of maintaining the same search performance and physical user interface as TCAM because our objective is to replace the TCAM in the market. Our RAM-based hardware architecture is completely different from that of TCAM and has dramatically reduced the costs and power consumption to 62% and 52%, respectively. We implemented FPS-RAM on an FPGA to examine its lookup operation.

  • A Proposal for Adopting the Frequency Response of an Envelope Amplifier with Memoryless DPD EER PA Model

    Takayuki KATO  Yoshinori KOGAMI  Yuuki FUNAHASHI  Atsushi YAMAOKA  Keiichi YAMAGUCHI  Yasuhiko TANABE  Jiafeng ZHOU  Kevin MORRIS  Gavin T. WATKINS  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1163-1171

    Recently, dynamic power supply voltage techniques, such as an Envelope Elimination and Restoration power amplifier (EER-PA) or Envelope-Tracking Power amplifier (ET-PA), have been attracting much attention because they can maintain high efficiency in large back-off region [1]-[6]. The dynamic power supply voltage techniques cause strong nonlinearity compared to a conventional power amplifier, hence a memoryless Digital Predistortion (DPD) technique is indispensable for these efficiency enhancement techniques. However, the performance of the memoryless DPD is degraded due to the frequency response of the envelope amplifier in the dynamic power supply voltage techniques [7]-[9]. In this paper, we clarify the degradation mechanisms of the memoryless DPD for the EER-PA due to the frequency response of the envelope amplifier based on the results of two-tone tests, and propose an analytical model for improving the performance of the memoryless DPD developed for the EER-PA. In addition, a prototype EER-PA is developed and we demonstrate that the residual distortion of the developed EER-PA with conventional memoryless DPD algorithm is compensated by the new algorithm based on the proposed analytical model. In the two-tone test, third-order intermodulation distortion (IMD3) with a tone spacing from 100 kHz to 4 MHz is improvement by up to 25 dB by the memoryless DPD algorithm based on the proposed model. Measured adjacent channel leakage power ratio (ACPR) of the developed EER-PA is improved from -22.5 dBc to -42.5 dBc in the OFDM signal test with 1.08 MHz bandwidth.

  • High Throughput Turbo Decoding Scheme

    Jaesung CHOI  Joonyoung SHIN  Jeong Woo LEE  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E95-B No:6
      Page(s):
    2109-2112

    A new high-throughput turbo decoding scheme adopting double flow, sliding window and shuffled decoding is proposed. Analytical and numerical results show that the proposed scheme requires low number of clock cycles and small memory size to achieve a BER performance equivalent to those of existing schemes.

  • Memory Size Reduction Technique of SDF IFFT Architecture for OFDM-Based Applications

    In-Gul JANG  Kyung-Ju CHO  Yong-Eun KIM  Jin-Gyun CHUNG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:6
      Page(s):
    2059-2064

    In this paper, to reduce the memory size requirements of IFFT for OFDM-based applications, we propose a new IFFT design technique based on a combined integer mapping of three IFFT input signals: modulated data, pilot and null signals. The proposed method focuses on reducing the size of memory cells in the first two stages of the single-path delay feedback (SDF) IFFT architectures since the first two stages require 75% of the total memory cells. By simulations of 2048-point IFFT design for cognitive radio systems, it is shown that the proposed IFFT design method achieves more than 13% reduction in gate count and 11% reduction in power consumption compared with conventional IFFT design.

  • A Low-Cost Imaging Method to Avoid Hand Shake Blur for Cell Phone Cameras

    Lin-bo LUO  Jong-wha CHONG  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E95-D No:6
      Page(s):
    1702-1706

    In this letter, a novel imaging method to reduce the hand shake blur of a cell phone camera without using frame memory is proposed. The method improves the captured image in real time through the use of two additional preview images whose parameters can be calculated in advance and stored in a look-up table. The method does not require frame memory, and thus it can significantly reduce the chip size. The scheme is suitable for integration into a low-cost image sensor of a cell phone camera.

201-220hit(654hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.