Keyword Search Result

[Keyword] multiple access(269hit)

1-20hit(269hit)

  • DDMA-MIMO/Capon Observations Using the MU Radar: Beamwidth Verification Using the Moon’s Reflection Open Access

    Tomoya MATSUDA  Koji NISHIMURA  Hiroyuki HASHIGUCHI  

     
    PAPER-Antennas and Propagation

      Vol:
    E107-B No:11
      Page(s):
    754-764

    Phased-array technology is primarily employed in atmospheric and wind profiling radars for meteorological remote sensing. As a novel avenue of advancement in phased-array technology, the Multiple-Input Multiple-Output (MIMO) technique, originally developed for communication systems, has been applied to radar systems. A MIMO radar system can be used to create a virtual receive antenna aperture plane with transmission freedom. The MIMO technique requires orthogonal waveforms on each transmitter to identify the transmit signals using multiple receivers; various methods have been developed to realize the orthogonality. In this study, we focus on the Doppler Division Multiple Access (DDMA) MIMO technique by using slightly different frequencies for the transmit waveforms, which can be separated by different receivers in the Doppler frequency domain. The Middle and Upper atmosphere (MU) radar is a VHF-band phased array atmospheric radar with multi-channel receivers. Additional configurations are necessary, requiring the inclusion of multi-channel transmitters to enable its operation as a MIMO radar. In this study, a comparison between the brightness distribution of the beamformer, utilizing echoes reflected from the moon, and the antenna pattern obtained through calculations revealed a high degree of consistency, which means that the MU radar functions effectively as a MIMO radar. Furthermore, it is demonstrated that the simultaneous application of MIMO and Capon techniques has a mutually enhancing effect.

  • SLNR-Based Joint Precoding for RIS Aided Beamspace HAP-NOMA Systems Open Access

    Pingping JI  Lingge JIANG  Chen HE  Di HE  Zhuxian LIAN  

     
    PAPER-Antennas and Propagation

      Vol:
    E107-B No:10
      Page(s):
    645-652

    High altitude platform (HAP), known as line-of-sight dominated communications, effectively enhance the spectral efficiency of wireless networks. However, the line-of-sight links, particularly in urban areas, may be severely deteriorated due to the complex communication environment. The reconfigurable intelligent surface (RIS) is employed to establish the cascaded-link and improve the quality of communication service by smartly reflecting the signals received from HAP to users without direct-link. Motivated by this, the joint precoding scheme for a novel RIS-aided beamspace HAP with non-orthogonal multiple access (HAP-NOMA) system is investigated to maximize the minimum user signal-to-leakage-plus-noise ratio (SLNR) by considering user fairness. Specifically, the SLNR is utilized as metric to design the joint precoding algorithm for a lower complexity, because the isolation between the precoding obtainment and power allocation can make the two parts be attained iteratively. To deal with the formulated non-convex problem, we first derive the statistical upper bound on SLNR based on the random matrix theory in large scale antenna array. Then, the closed-form expressions of power matrix and passive precoding matrix are given by introducing auxiliary variables based on the derived upper bound on SLNR. The proposed joint precoding only depends on the statistical channel state information (SCSI) instead of instantaneous channel state information (ICSI). NOMA serves multi-users simultaneously in the same group to compensate for the loss of spectral efficiency resulted from the beamspace HAP. Numerical results show the effectiveness of the derived statistical upper bound on SLNR and the performance enhancement of the proposed joint precoding algorithm.

  • Minimization of Energy Consumption in TDMA-Based Wireless-Powered Multi-Access Edge Computing Networks

    Xi CHEN  Guodong JIANG  Kaikai CHI  Shubin ZHANG  Gang CHEN  Jiang LIU  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2023/06/19
      Vol:
    E106-A No:12
      Page(s):
    1544-1554

    Many nodes in Internet of Things (IoT) rely on batteries for power. Additionally, the demand for executing compute-intensive and latency-sensitive tasks is increasing for IoT nodes. In some practical scenarios, the computation tasks of WDs have the non-separable characteristic, that is, binary offloading strategies should be used. In this paper, we focus on the design of an efficient binary offloading algorithm that minimizes system energy consumption (EC) for TDMA-based wireless-powered multi-access edge computing networks, where WDs either compute tasks locally or offload them to hybrid access points (H-APs). We formulate the EC minimization problem which is a non-convex problem and decompose it into a master problem optimizing binary offloading decision and a subproblem optimizing WPT duration and task offloading transmission durations. For the master problem, a DRL based method is applied to obtain the near-optimal offloading decision. For the subproblem, we firstly consider the scenario where the nodes do not have completion time constraints and obtain the optimal analytical solution. Then we consider the scenario with the constraints. By jointly using the Golden Section Method and bisection method, the optimal solution can be obtained due to the convexity of the constraint function. Simulation results show that the proposed offloading algorithm based on DRL can achieve the near-minimal EC.

  • NOMA-Based Highly-Efficient Low-Latency HARQ with Inter-Base Station Cooperation for URLLC Open Access

    Ryota KOBAYASHI  Takanori HARA  Yasuaki YUDA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1219-1227

    This paper extends our previously reported non-orthogonal multiple access (NOMA)-based highly-efficient and low-latency hybrid automatic repeat request (HARQ) method for ultra-reliable low latency communications (URLLC) to the case with inter-base station cooperation. In the proposed method, delay-sensitive URLLC packets are preferentially multiplexed with best-effort enhanced mobile broadband (eMBB) packets in the same channel using superposition coding to reduce the transmission latency of the URLLC packet while alleviating the throughput loss in eMBB. Although data transmission to the URLLC terminal is conducted by multiple base stations based on inter-base station cooperation, the proposed method allocates radio resources to URLLC terminals which include scheduling (bandwidth allocation) and power allocation at each base station independently to achieve the short transmission latency required for URLLC. To avoid excessive radio resource assignment to URLLC terminals due to independent resource assignment at each base station, which may result in throughput degradation in eMBB terminals, we employ an adaptive path-loss-dependent weighting approach in the scheduling-metric calculation. This achieves appropriate radio resource assignment to URLLC terminals while reducing the packet error rate (PER) and transmission delay time thanks to the inter-base station cooperation. We show that the proposed method significantly improves the overall performance of the system that provides simultaneous eMBB and URLLC services.

  • Low Complexity Resource Allocation in Frequency Domain Non-Orthogonal Multiple Access Open Access

    Satoshi DENNO  Taichi YAMAGAMI  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/05/08
      Vol:
    E106-B No:10
      Page(s):
    1004-1014

    This paper proposes low complexity resource allocation in frequency domain non-orthogonal multiple access where many devices access with a base station. The number of the devices is assumed to be more than that of the resource for network capacity enhancement, which is demanded in massive machine type communications (mMTC). This paper proposes two types of resource allocation techniques, all of which are based on the MIN-MAX approach. One of them seeks for nicer resource allocation with only channel gains. The other technique applies the message passing algorithm (MPA) for better resource allocation. The proposed resource allocation techniques are evaluated by computer simulation in frequency domain non-orthogonal multiple access. The proposed technique with the MPA achieves the best bit error rate (BER) performance in the proposed techniques. However, the computational complexity of the proposed techniques with channel gains is much smaller than that of the proposed technique with the MPA, whereas the BER performance of the proposed techniques with channel gains is only about 0.1dB inferior to that with the MPA in the multiple access with the overloading ratio of 1.5 at the BER of 10-4. They attain the gain of about 10dB at the BER of 10-4 in the multiple access with the overloading ration of 2.0. Their complexity is 10-16 as small as the conventional technique.

  • Highly-Efficient Low-Latency HARQ Built on NOMA for URLLC: Radio Resource Allocation and Transmission Rate Control Aspects Open Access

    Ryota KOBAYASHI  Yasuaki YUDA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/05/22
      Vol:
    E106-B No:10
      Page(s):
    1015-1023

    Hybrid automatic repeat request (HARQ) is an essential technology that efficiently reduces the transmission error rate. However, for ultra-reliable low latency communications (URLLC) in the 5th generation mobile communication systems and beyond, the increase in latency due to retransmission must be minimized in HARQ. In this paper, we propose a highly-efficient low-latency HARQ method built on non-orthogonal multiple access (NOMA) for URLLC while minimizing the performance loss for coexisting services (use cases) such as enhanced mobile broadband (eMBB). The proposed method can be seen as an extension of the conventional link-level non-orthogonal HARQ to the system-level protocol. This mitigates the problems of the conventional link-level non-orthogonal HARQ, which are decoding error under poor channel conditions and an increase in transmission delay due to restrictions in retransmission timing. In the proposed method, delay-sensitive URLLC packets are preferentially multiplexed with best-effort eMBB packets in the same channel using superposition coding to reduce the transmission latency of the URLLC packet while alleviating the throughput loss in eMBB. This is achieved using a weighted channel-aware resource allocator (scheduler). The inter-packet interference multiplexed in the same channel is removed using a successive interference canceller (SIC) at the receiver. Furthermore, the transmission rates for the initial transmission and retransmission are controlled in an appropriate manner for each service in order to deal with decoding errors caused by error in transmission rate control originating from a time varying channel. We show that the proposed method significantly improves the overall performance of a system that simultaneously provides eMBB and URLLC services.

  • Non-Orthogonal Multiple Access Based on Orthogonal Space-Time Block Codes for Mobile Communications

    Yuyuan CHANG  Kazuhiko FUKAWA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2023/04/17
      Vol:
    E106-B No:10
      Page(s):
    1024-1033

    Non-orthogonal multiple access (NOMA), which combines multiple user signals and transmits the combined signal over one channel, can achieve high spectral efficiency for mobile communications. However, combining the multiple signals can lead to degradation of bit error rates (BERs) of NOMA under severe channel conditions. In order to improve the BER performance of NOMA, this paper proposes a new NOMA scheme based on orthogonal space-time block codes (OSTBCs). The proposed scheme transmits several multiplexed signals over their respective orthogonal time-frequency channels, and can gain diversity effects due to the orthogonality of OSTBC. Furthermore, the new scheme can detect the user signals using low-complexity linear detection in contrast with the conventional NOMA. The paper focuses on the Alamouti code, which can be considered the simplest OSTBC, and theoretically analyzes the performance of the linear detection. Computer simulations under the condition of the same bit rate per channel show that the Alamouti code based scheme using two channels is superior to the conventional NOMA using one channel in terms of BER performance. As shown by both the theoretical and simulation analyses, the linear detection for the proposed scheme can maintain the same BER performance as that of the maximum likelihood detection, when the two channels have the same frequency response and do not bring about any diversity effects, which can be regarded as the worst case.

  • Exploiting RIS-Aided Cooperative Non-Orthogonal Multiple Access with Full-Duplex Relaying

    Guoqing DONG  Zhen YANG  Youhong FENG  Bin LYU  

     
    LETTER-Mobile Information Network and Personal Communications

      Pubricized:
    2023/01/06
      Vol:
    E106-A No:7
      Page(s):
    1011-1015

    In this paper, a novel reconfigurable intelligent surface (RIS)-aided full-duplex (FD) cooperative non-orthogonal multiple access (CNOMA) network is investigated over Nakagami-m fading channels, where two RISs are employed to help the communication of paired users. To evaluate the potential benefits of our proposed scheme, we first derive the closed-form expressions of the outage probability. Then, we derive users' diversity orders according to the asymptotic approximation at high signal-to-noise-ratio (SNR). Simulation results validate our analysis and reveal that users' diversity orders are affected by their channel fading parameters, the self-interference of FD, and the number of RIS elements.

  • Sum Rate Maximization for Cooperative NOMA System with IQ Imbalance

    Xiaoyu WAN  Yu WANG  Zhengqiang WANG  Zifu FAN  Bin DUO  

     
    PAPER-Network

      Pubricized:
    2023/01/17
      Vol:
    E106-B No:7
      Page(s):
    571-577

    In this paper, we investigate the sum rate (SR) maximization problem for downlink cooperative non-orthogonal multiple access (C-NOMA) system under in-phase and quadrature-phase (IQ) imbalance at the base station (BS) and destination. The BS communicates with users by a half-duplex amplified-and-forward (HD-AF) relay under imperfect IQ imbalance. The sum rate maximization problem is formulated as a non-convex optimization with the quality of service (QoS) constraint for each user. We first use the variable substitution method to transform the non-convex SR maximization problem into an equivalent problem. Then, a joint power and rate allocation algorithm is proposed based on successive convex approximation (SCA) to maximize the SR of the systems. Simulation results verify that the algorithm can improve the SR of the C-NOMA compared with the cooperative orthogonal multiple access (C-OMA) scheme.

  • On Secrecy Performance Analysis for Downlink RIS-Aided NOMA Systems

    Shu XU  Chen LIU  Hong WANG  Mujun QIAN  Jin LI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/11/21
      Vol:
    E106-B No:5
      Page(s):
    402-415

    Reconfigurable intelligent surface (RIS) has the capability of boosting system performance by manipulating the wireless propagation environment. This paper investigates a downlink RIS-aided non-orthogonal multiple access (NOMA) system, where a RIS is deployed to enhance physical-layer security (PLS) in the presence of an eavesdropper. In order to improve the main link's security, the RIS is deployed between the source and the users, in which a reflecting element separation scheme is developed to aid data transmission of both the cell-center and the cell-edge users. Additionally, the closed-form expressions of secrecy outage probability (SOP) are derived for the proposed RIS-aided NOMA scheme. To obtain more deep insights on the derived results, the asymptotic performance of the derived SOP is analyzed. Moreover, the secrecy diversity order is derived according to the asymptotic approximation in the high signal-to-noise ratio (SNR) and main-to-eavesdropper ratio (MER) regime. Furthermore, based on the derived results, the power allocation coefficient and number of elements are optimized to minimize the system SOP. Simulations demonstrate that the theoretical results match well with the simulation results and the SOP of the proposed scheme is clearly less than that of the conventional orthogonal multiple access (OMA) scheme obviously.

  • Non-Orthogonal Physical Layer (NOPHY) Design towards 5G Evolution and 6G

    Xiaolin HOU  Wenjia LIU  Juan LIU  Xin WANG  Lan CHEN  Yoshihisa KISHIYAMA  Takahiro ASAI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/04/26
      Vol:
    E105-B No:11
      Page(s):
    1444-1457

    5G has achieved large-scale commercialization across the world and the global 6G research and development is accelerating. To support more new use cases, 6G mobile communication systems should satisfy extreme performance requirements far beyond 5G. The physical layer key technologies are the basis of the evolution of mobile communication systems of each generation, among which three key technologies, i.e., duplex, waveform and multiple access, are the iconic characteristics of mobile communication systems of each generation. In this paper, we systematically review the development history and trend of the three key technologies and define the Non-Orthogonal Physical Layer (NOPHY) concept for 6G, including Non-Orthogonal Duplex (NOD), Non-Orthogonal Multiple Access (NOMA) and Non-Orthogonal Waveform (NOW). Firstly, we analyze the necessity and feasibility of NOPHY from the perspective of capacity gain and implementation complexity. Then we discuss the recent progress of NOD, NOMA and NOW, and highlight several candidate technologies and their potential performance gain. Finally, combined with the new trend of 6G, we put forward a unified physical layer design based on NOPHY that well balances performance against flexibility, and point out the possible direction for the research and development of 6G physical layer key technologies.

  • Asynchronous NOMA Downlink Based on Single-Carrier Frequency-Domain Equalization

    Tomonari KURAYAMA  Teruyuki MIYAJIMA  Yoshiki SUGITANI  

     
    PAPER

      Pubricized:
    2022/04/06
      Vol:
    E105-B No:10
      Page(s):
    1173-1180

    Non-orthogonal multiple access (NOMA) allows several users to multiplex in the power-domain to improve spectral efficiency. To further improve its performance, it is desirable to reduce inter-user interference (IUI). In this paper, we propose a downlink asynchronous NOMA (ANOMA) scheme applicable to frequency-selective channels. The proposed scheme introduces an intentional symbol offset between the multiplexed signals to reduce IUI, and it employs cyclic-prefixed single-carrier transmission with frequency-domain equalization (FDE) to reduce inter-symbol interference. We show that the mean square error for the FDE of the proposed ANOMA scheme is smaller than that of a conventional NOMA scheme. Simulation results show that the proposed ANOMA with appropriate power allocation achieves a better sum rate compared to the conventional NOMA.

  • Adaptive Resource Allocation Based on Factor Graphs in Non-Orthogonal Multiple Access Open Access

    Taichi YAMAGAMI  Satoshi DENNO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/04/15
      Vol:
    E105-B No:10
      Page(s):
    1258-1267

    In this paper, we propose a non-orthogonal multiple access with adaptive resource allocation. The proposed non-orthogonal multiple access assigns multiple frequency resources for each device to send packets. Even if the number of devices is more than that of the available frequency resources, the proposed non-orthogonal access allows all the devices to transmit their packets simultaneously for high capacity massive machine-type communications (mMTC). Furthermore, this paper proposes adaptive resource allocation algorithms based on factor graphs that adaptively allocate the frequency resources to the devices for improvement of the transmission performances. This paper proposes two allocation algorithms for the proposed non-orthogonal multiple access. This paper shows that the proposed non-orthogonal multiple access achieves superior transmission performance when the number of the devices is 50% greater than the amount of the resource, i.e., the overloading ratio of 1.5, even without the adaptive resource allocation. The adaptive resource allocation enables the proposed non-orthogonal access to attain a gain of about 5dB at the BER of 10-4.

  • Compressed Sensing Based Power Allocation and User Selection with Adaptive Resource Block Selection for Downlink NOMA Systems

    Tomofumi MAKITA  Osamu MUTA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/02/18
      Vol:
    E105-B No:8
      Page(s):
    959-968

    The application of compressed sensing (CS) theory to non-orthogonal multiple access (NOMA) systems has been investigated recently. As described in this paper, we propose a quality-of-service (QoS)-aware, low-complexity, CS-based user selection and power allocation scheme with adaptive resource block selection for downlink NOMA systems, where the tolerable interference threshold is designed mathematically to achieve a given QoS requirement by being relaxed to a constrained l1 norm optimization problem. The proposed scheme adopts two adaptive resource block (RB) selection algorithms that assign proper RB to user pairs, i.e. max-min channel assignment and two-step opportunistic channel assignment. Simulation results show that the proposed scheme is more effective at improving the user rate than other reference schemes while reducing the required complexity. The QoS requirement is approximately satisfied as long as the required QoS value is feasible.

  • A Large-Scale SCMA Codebook Optimization and Codeword Allocation Method

    Shiqing QIAN  Wenping GE  Yongxing ZHANG  Pengju ZHANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/12/24
      Vol:
    E105-B No:7
      Page(s):
    788-796

    Sparse code division multiple access (SCMA) is a non-orthogonal multiple access (NOMA) technology that can improve frequency band utilization and allow many users to share quite a few resource elements (REs). This paper uses the modulation of lattice theory to develop a systematic construction procedure for the design of SCMA codebooks under Gaussian channel environments that can achieve near-optimal designs, especially for cases that consider large-scale SCMA parameters. However, under the condition of large-scale SCMA parameters, the mother constellation (MC) points will overlap, which can be solved by the method of the partial dimensions transformation (PDT). More importantly, we consider the upper bounded error probability of the signal transmission in the AWGN channels, and design a codeword allocation method to reduce the inter symbol interference (ISI) on the same RE. Simulation results show that under different codebook sizes and different overload rates, using two different message passing algorithms (MPA) to verify, the codebook proposed in this paper has a bit error rate (BER) significantly better than the reference codebooks, moreover the convergence time does not exceed that of the reference codebooks.

  • A Lower Bound on the Maximum Correlation Magnitude Outside LHZ for LHZ-FHS Sets

    Xiaoxiao CUI  Cuiling FAN  Xiaoni DU  

     
    LETTER-Coding Theory

      Pubricized:
    2022/01/21
      Vol:
    E105-A No:7
      Page(s):
    1096-1100

    Low-hit-zone frequency-hopping sequences (LHZ-FHSs) are frequency-hopping sequences with low Hamming correlation in a low-hit-zone (LHZ), which have important applications in quasi-synchronous communication systems. However, the strict quasi-synchronization may be hard to maintain at all times in practical FHMA networks, it is also necessary to minimize the Hamming correlation for time-shifts outside of the LHZ. The main objective of this letter is to propose a lower bound on the maximum correlation magnitude outside the low-hit-zone for LHZ-FHS sets. It turns out that the proposed bound is tight or almost tight in the sense that it can be achieved by some LHZ-FHS sets.

  • Improved Metric Function for AlphaSeq Algorithm to Design Ideal Complementary Codes for Multi-Carrier CDMA Systems

    Shucong TIAN  Meng YANG  Jianpeng WANG  Rui WANG  Avik R. ADHIKARY  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/11/15
      Vol:
    E105-A No:5
      Page(s):
    901-905

    AlphaSeq is a new paradigm to design sequencess with desired properties based on deep reinforcement learning (DRL). In this work, we propose a new metric function and a new reward function, to design an improved version of AlphaSeq. We show analytically and also through numerical simulations that the proposed algorithm can discover sequence sets with preferable properties faster than that of the previous algorithm.

  • A Construction of Inter-Group Complementary Sequence Set Based on Interleaving Technique

    Xiaoyu CHEN  Huanchang LI  Yihan ZHANG  Yubo LI  

     
    LETTER-Coding Theory

      Pubricized:
    2021/07/12
      Vol:
    E105-A No:1
      Page(s):
    68-71

    A new construction of shift sequences is proposed under the condition of P|L, and then the inter-group complementary (IGC) sequence sets are constructed based on the shift sequence. By adjusting the parameter q, two or three IGC sequence sets can be obtained. Compared with previous methods, the proposed construction can provide more sequence sets for both synchronous and asynchronous code-division multiple access communication systems.

  • Optical CDMA Scheme Using Generalized Modified Prime Sequence Codes and Extended Bi-Orthogonal Codes Open Access

    Kyohei ONO  Shoichiro YAMASAKI  Shinichiro MIYAZAKI  Tomoko K. MATSUSHIMA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Pubricized:
    2021/03/08
      Vol:
    E104-A No:9
      Page(s):
    1329-1338

    Optical code-division multiple-access (CDMA) techniques provide multi-user data transmission services in optical wireless and fiber communication systems. Several signature codes, such as modified prime sequence codes (MPSCs), generalized MPSCs (GMPSCs) and modified pseudo-orthogonal M-sequence sets, have been proposed for synchronous optical CDMA systems. In this paper, a new scheme is proposed for synchronous optical CDMA to increase the number of users and, consequently, to increase the total data rate without increasing the chip rate. The proposed scheme employs a GMPSC and an extended bi-orthogonal code which is a unipolar code generated from a bipolar Walsh code. Comprehensive comparisons between the proposed scheme and several conventional schemes are shown. Moreover, bit error rate performance and energy efficiency of the proposed scheme are evaluated comparing with those of the conventional optical CDMA schemes under atmospheric propagation environment.

  • Sum Rate Maximization for Cooperative NOMA with Hardware Impairments

    Xiao-yu WAN  Rui-fei CHANG  Zheng-qiang WANG  Zi-fu FAN  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2021/05/28
      Vol:
    E104-D No:9
      Page(s):
    1399-1405

    This paper investigates the sum rate (SR) maximization problem for downlink cooperative non-orthogonal multiple access (C-NOMA) systems with hardware impairments (HIs). The source node communicates with users via a half-duplex amplified-and-forward (HD-AF) relay with HIs. First, we derive the SR expression of the systems under HIs. Then, SR maximization problem is formulated under maximum power of the source, relay, and the minimum rate constraint of each user. As the original SR maximization problem is a non-convex problem, it is difficult to find the optimal resource allocation directly by tractional convex optimization method. We use variable substitution method to convert the non-convex SR maximization problem to an equivalent convex optimization problem. Finally, a joint power and rate allocation based on interior point method is proposed to maximize the SR of the systems. Simulation results show that the algorithm can improve the SR of the C-NOMA compared with the cooperative orthogonal multiple access (C-OMA) scheme.

1-20hit(269hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.