1-4hit |
I-Jen CHAO Ching-Wen HOU Bin-Da LIU Soon-Jyh CHANG Chun-Yueh HUANG
A third-order low-distortion delta-sigma modulator (DSM), whose third-order noise-shaping ability is achieved by just a single opamp, is proposed. Since only one amplifier is required in the whole circuit, the designed DSM is very power efficient. To realize the adder in front of quantizer without employing the huge-power opamp, a capacitive passive adder, which is the digital-to-analog converter (DAC) array of a successive-approximation-type quantizer, is used. In addition, the feedback path timing is extended from a nonoverlapping interval for the conventional low-distortion structure to half of the clock period, so that the strict operation timing issue with regard to quantization and the dynamic element matching (DEM) logic operation can be solved. In the proposed DSM structure, the features of the unity-gain signal transfer function (STF) and finite-impulse-response (FIR) noise transfer function (NTF) are still preserved, and thus advantages such as a relaxed opamp slew rate and reduced output swing are also maintained, as with the conventional low-distortion DSM. Moreover, the memory effect in the proposed DSM is analyzed when employing the opamp sharing for integrators. The proposed third-order DSM with a 4-bit SAR ADC as the quantizer is implemented in a 90-nm CMOS process. The post-layout simulations show a 79.8-dB signal-to-noise and distortion ratio (SNDR) in the 1.875-MHz signal bandwidth (OSR=16). The active area of the circuit is 0.35mm2 and total power consumption is 2.85mW, resulting in a figure of merit (FOM) of 95 fJ/conversion-step.
I-Jen CHAO Chung-Lun HSU Bin-Da LIU Soon-Jyu CHANG Chun-Yueh HUANG Hsin-Wen TING
This paper proposes a third-order low-distortion delta-sigma modulator (DSM). The third-order noise shaping is achieved by a single opamp (excluding the quantizer). In the proposed DSM structure, the timing limitation on the quantizer and dynamic element matching (DEM) logic in a conventional low-distortion structure can be relaxed from a non-overlapping interval to half of the clock period. A cyclic analog-to-digital converter with a loading-free technique is utilized as a quantizer, which shares an opamp with the active adder. The signal transfer function (STF) is preserved as unity, which means that the integrators process only the quantization noise component. As a result, the opamp used for the integrators has lower requirements, as low-distortion DSMs, on slew rate, output swing, and power consumption. The proposed third-order DSM with a 4-bit cyclic-type quantizer is implemented in a 90-nm CMOS process. Under a sampling rate of 80 MHz and oversampling ratio of 16, simulation results show that an 81.97-dB signal-to-noise and distortion ratio and an 80-dB dynamic range are achieved with 4.17-mW total power consumption. The resulting figure of merit (FOM) is 81.5 fJ/conversion-step.
Daisuke KANEMOTO Toru IDO Kenji TANIGUCHI
A low power and high performance with third order delta-sigma modulator for audio applications, fabricated in a 0.18 µm CMOS process, is presented. The modulator utilizes a third order noise shaping with only one opamp by using an opamp sharing technique. The opamp sharing among three integrator stages is achieved through the optimal operation timing, which makes use of the load capacitance differences between the three integrator stages. The designed modulator achieves 101.1 dB signal-to-noise ratio (A-weighted) and 101.5 dB dynamic range (A-weighted) with 7.5 mW power consumption from a 3.3 V supply. The die area is 1.27 mm2. The fabricated delta-sigma modulator achieves the highest figure-of-merit among published high performance low power audio delta-sigma modulators.
Naoya WAKI Hiroki SATO Akira HYOGO Keitaro SEKINE
In this paper, horizontal (where an opamp is shared in two adjacent stages) and vertical (where an opamp is shared across two paths) opamp sharing techniques for a two-path band-pass (BP) ΔΣ modulator are described, and input-feedforward two-path fourth-order BP ΔΣ modulators that have only two opamps are proposed. The proposed modulators are based on the horizontal or vertical opamp sharing technique. They can be realized with both a summation circuit using a switched capacitor (SC) network and a second-order high-pass filter (HPF) with a horizontal shared opamp or a double-sampling first-order HPF with a vertical shared opamp, which are based on an SC first-order HPF with an opamp. These techniques can reduce the number of opamps with no additional component and the chip area as well as realize lower power consumption.