1-16hit |
Yi Wen JIAO Ze Fu GAO Wen Ge YANG
In future deep space communication missions, VLBI (Very Long Baseline Interferometry) based on antenna array technology remains a critical detection method, which urgently requires the improvement of synthesis performance for antenna array signals. Considering this, focusing on optimizing the traditional antenna grouping method applied in the phase estimation algorithm, this letter proposes a “L/2 to L/2” antenna grouping method based on the maximum correlation signal-to-noise ratio (SNR). Following this idea, a phase difference estimation algorithm named “Couple” is presented. Theoretical analysis and simulation verification illustrate that: when ρ < -10dB, the proposed “Couple” has the highest performance; increasing the number of antennas can significantly improve its synthetic loss performance and robustness. The research of this letter indicates a promising potential in supporting the rising deep space exploration and communication missions.
Kazuhiro MURAKAMI Arata KAWAMURA Yoh-ichi FUJISAKA Nobuhiko HIRUMA Youji IIGUNI
In this paper, we propose a real-time BSS (Blind Source Separation) system with two microphones that extracts only desired sound sources. Under the assumption that the desired sound sources are close to the microphones, the proposed BSS system suppresses distant sound sources as undesired sound sources. We previously developed a BSS system that can estimate the distance from a microphone to a sound source and suppress distant sound sources, but it was not a real-time processing system. The proposed BSS system is a real-time version of our previous BSS system. To develop the proposed BSS system, we simplify some BSS procedures of the previous system. Simulation results showed that the proposed system can effectively suppress the distant source signals in real-time and has almost the same capability as the previous system.
Takanori ISHIKURO Ryoichi SATO Yoshio YAMAGUCHI Hiroyoshi YAMADA
In this paper, we propose a simple algorithm for detecting a vehicle trapped in flooded urban area by using quad-polarimetric SAR data. The four-component scattering power decomposition and phase difference of HH-VV co-pol ratio are effectively used in the proposed algorithm. Here we carry out polarimetric scattering measurement for a scaled vehicle model surrounded by two buildings model in an anechoic chamber, to acquire the quad-polarimetric SAR data. It is confirmed from the results of the image analysis for the measured SAR data that the proposed algorithm for vehicle detection works well even under severe environment where the vehicle is set in the shadow of the building and/or the alignment of the vehicle or the buildings is obliquely oriented to direction of the radar line of sight.
Ryoji MIYAHARA Akihiko SUGIYAMA
This paper proposes gain relaxation in signal enhancement designed for speech recognition. Gain relaxation selectively applies softer enhancement of a target signal to eliminate potential degradation in speech recognition caused by small undesirable distortion in the target signal components. The softer enhancement is a solution to overlooked performance degradation in signal enhancement combined with speech recognition which is encountered in commercial products with an unaware small local noise source. Evaluation of directional interference suppression with signals recorded by a commercial PC (personal computer) demonstrates that signal enhancement over the input is achieved without sacrificing the performance for clean speech.
Ryoji MIYAHARA Akihiko SUGIYAMA
This paper proposes a directional noise suppressor with a specified constant beamwidth for directional interferences and diffuse noise. A directional gain is calculated based on interchannel phase difference and combined with a spectral gain commonly used in single-channel noise suppressors. The beamwidth can be specified as passband edges of the directional gain. In order to implement frequency-independent constant beamwidth, frequency-proportionate directional gains are defined for different frequencies as a constraint. Evaluation with signals recorded by a commercial PC demonstrates good agreement between the theoretical and the measured directivity. The signal-to-noise ratio improvement and the PESQ score for the enhanced signal are improved by 24.4dB and 0.3 over a conventional noise suppressor. In a speech recognition scenario, the proposed directional noise suppressor outperforms both the conventional nondirectional noise suppressor and the conventional directional noise suppressor based on phase based T/F filtering with a negligible degradation in the word error rate for clean speech.
Takeshi MITSUNAKA Masafumi YAMANOUE Kunihiko IIZUKA Minoru FUJISHIMA
In this paper, we present a differential dual-modulus prescaler based on an injection-locked frequency divider (ILFD) for satellite low-noise block (LNB) down-converters. We fabricated three-stage differential latches using an ILFD and a cascaded differential divider in a 130-nm CMOS process. The prototype chip core area occupies 40µm × 20µm. The proposed prescaler achieved the locking range of 2.1-10GHz with both divide-by-10 and divide-by-11 operations at a supply voltage of 1.4V. Normalized energy consumptions are 0.4pJ (=mW/GHz) at a 1.4-V supply voltage and 0.24pJ at a 1.2-V supply voltage. To evaluate the tolerance of phase-difference deviation of the input differential pair from the perfect differential phase-difference, 180 degrees, we measured the operational frequencies for various phase-difference inputs. The proposed prescaler achieved the operational frequency range of 2.1-10GHz with an input phase-difference deviation of less than 90 degrees. However, the range of operational frequency decreases as the phase-difference deviation increases beyond 90 degrees and reaches 3.9-7.9GHz for the phase-difference deviation of 180 degrees (i.e. no phase difference). In addition, to confirm the fully locking operation, we measured the spurious noise and the phase noise degradation while reducing the supply voltage. The sensitivity analysis of the prescaler for various supply voltages can explain the above degradation of spectral purity. Spurious noise arises and the phase noise degrades with decreasing supply voltage due to the quasi- and non-locking operations. We verified the fully-locking operation for the LNB down-converter at a 1.4-V supply voltage.
Kazumitsu SAKAMOTO Ken HIRAGA Tomohiro SEKI Tadao NAKAGAWA Kazuhiro UEHARA
A Simple decoding method for short-range MIMO (SR-MIMO) transmission can reduce the power consumption for MIMO decoding, but the distance between the transceivers requires millimeter-order accuracy in order to satisfy the required transmission quality. In this paper, we propose a phase difference control method between each propagation channel to alleviate the requirements for the transmission distance accuracy. In the proposed method, the phase difference between each propagation channel is controlled by changing the transmission (or received) power ratio of each element of sub-array antennas. In millimeter-wave broadband transmission simulation, we clarified that when sub-array antenna spacing is set to 6.6 mm and element spacing of sub-array antenna is set to 2.48mm, the proposed method can extend the transmission distance range satisfying the required transmission quality, which is that bit error rate (BER) before error correction is less than 10-2 from 9∼29mm to 0∼50mm in QPSK, from 15∼19mm to 0∼30mm in 16QAM, and from only 15mm to 4∼22mm in 64QAM.
Kai LI Yanmeng GUO Qiang FU Junfeng LI Yonghong YAN
Traditional two-microphone noise reduction algorithms to deal with highly nonstationary directional noises generally use the direction of arrival or phase difference information. The performance of these algorithms deteriorate when diffuse noises coexist with nonstationary directional noises in realistic adverse environments. In this paper, we present a two-channel noise reduction algorithm using a spatial information-based speech estimator and a spatial-information-controlled soft-decision noise estimator to improve the noise reduction performance in realistic non-stationary noisy environments. A target presence probability estimator based on Bayes rules using both phase difference and magnitude squared coherence is proposed for soft-decision of noise estimation, so that they can share complementary advantages when both directional noises and diffuse noises are present. Performances of the proposed two-microphone noise reduction algorithm are evaluated by noise reduction, log-spectral distance (LSD) and word recognition rate (WRR) of a distant-talking ASR system in a real room's noisy environment. Experimental results show that the proposed algorithm achieves better noises suppression without further distorting the desired signal components over the comparative dual-channel noise reduction algorithms.
Masahito TOGAMI Yasunari OBUCHI
We propose a new methodology of DOA (direction of arrival) estimation named SPIRE (Stepwise Phase dIfference REstoration) that is able to estimate sound source directions even if there is more than one source in a reverberant environment. DOA estimation in reverberant environments is difficult because the variance of the direction of an estimated sound source increases in reverberant environments. Therefore, we want the distance between microphones to be long. However, because of the spatial aliasing problem, the distance cannot be longer than half the wavelength of the maximum frequency of a source. DOA estimation performance of SPIRE is not limited by the spatial aliasing problem. The major feature of SPIRE is restoration of the phase difference of a microphone pair (M1) by using the phase difference of another microphone pair (M2) under the condition that the distance between the M1 microphones is longer than the distance between the M2 microphones. This restoration process enables the reduction of the variance of an estimated sound source direction and can alleviates the spatial aliasing problem that occurs with the M1 phase difference using direction estimation of the M2 microphones. The experimental results in a reverberant environment (reverberation time = about 300 ms) indicate that even when there are multiple sources, the proposed method can estimate the source direction more accurately than conventional methods. In addition, DOA estimation performance of SPIRE with the array length 0.2 m is shown to be almost equivalent to that of GCC-PHAT with the array length 0.5 m. SPIRE can executes DOA estimation with a smaller microphone array than GCC-PHAT. From the viewpoint of the hardware size and coherence problem, the array length is required to be as small as possible. This feature of SPIRE is preferable.
Kenichi KOBAYASHI Takao SOMEYA Tomoaki OHTSUKI Sigit P.W. JAROT Tsuyoshi KASHIMA
Multiple-Input Multiple-Output (MIMO) systems that realize high-speed data transmission with multiple antennas at both transmitter and receiver are drawing much attention. In line-of sight (LOS) environments, the performance of MIMO systems depends largely on the difference of the phase difference of direct paths from transmit antennas to each receive antenna. When the phase difference of direct paths are close to each other, the spatial division multiplexing (SDM) channels are not orthogonal to each other so signal detection becomes difficult. In this paper, we propose a MIMO system with relative phase difference time-shift modulation (RPDTM) in Rician fading environments. The proposed scheme transmits independent signals from each antenna at each time slot where the relative phase difference between signal constellations used by transmit antennas varies in a pre-determined pattern. This transmission virtually changes the phase difference of direct paths from transmit antennas to each receive antenna without lowering data rate and without knowledge of the channels. In addition, forward error correction coding (ECC) is applied to exploit the time slots where the receiver can detect the signals easily to improve the detection performance. If there are time slots where the receiver can separate the received signal, the receiver can decode the data by using the time slots and the correlation between data. From the results of computer simulation, we show that MIMO system with RPDTM can achieve the better bit error rate (BER) than the conventional MIMO system. We also show that the MIMO system with RPDTM is effective by about Rician factor K = 10 dB.
Jingyu HUA Xiaohu YOU Dongming WANG
In [1], an algorithm based on phase variations of received pilot symbols was proposed to estimate one of the most important channel parameters, maximum Doppler shift, fd. However, AWGN (Additive white gauss noise) will cause large estimation error in some cases. In order to analyze the influence of noise, we extended the phase probability density function (pdf) in [1] to the scenario with both fading and AWGN, then the estimation error is characterized in closed-form expression. By this error expression, we found that power control will affect the estimator of [1] and we proposed a modification method based on SNR estimation to obtain accurate Doppler shift estimation in moderate low SNRs (signal-to-noise ratio). Simulation results show high accuracy in wide range of velocities and SNRs.
Masayuki YAMAUCHI Yoshifumi NISHIO Akio USHIDA Mamoru TANAKA
In this study, nonlinear wave phenomena related to transmissions and reflections of the phase-inversion waves around a discontinuity of a coupled system consisting of two kinds of arrays of van der Pol oscillators are investigated. By computer simulations, behavior of the phase-inversion waves around the discontinuity in the coupled system is classified into eight types. Further, the mechanisms of the transmission and the reflection of a phase-inversion wave at the discontinuity are explained. Circuit experiments confirm the simulated results.
Isamu KOUZUKI Tomonori KANEKO Minoru ITO
An analysis of the phase difference spectrum between two images allows precise image shift detection. Image shifts are directly evaluated from the phase difference spectrum without Fourier inversion. In the calculation, the weight function containing the frequency and the cross spectrum is used and an unlapping procedure is carried out. In an experiment using synthetic and real images of typical image patterns, accuracy as high as 0.01-0.02 pixel was achieved stably and reliably for most of the image patterns.
Masayuki YAMAUCHI Masahiro OKUDA Yoshifumi NISHIO Akio USHIDA
Recently, we have discovered wave propagation phenomena which are continuously existing waves of changing phase states between two adjacent oscillators from in-phase to anti-phase or from anti-phase to in-phase in van der Pol oscillators coupled by inductors as a ladder. We named the phenomena as "phase-inversion waves." In this study, phase-inversion waves which exist in the state of in-and-anti-phase synchronization have been found. We observe the phenomena by circuit experiments and computer calculations, and investigate them.
Masayuki YAMAUCHI Yoshifumi NISHIO Akio USHIDA
In this study, wave propagation phenomena of phase differences observed in van der Pol oscillators coupled by inductors as a ladder are investigated. The phenomena are called "phase waves. " We classify the observed phenomena and analyze the difference in detail. We observe that the behavior of the phase waves generated by giving a phase difference of positive value is different from the behavior of those generated by giving a phase difference of negative value. We can also observe the generation of two pairs of phase waves. We clarify the mechanisms of these complicated phenomena. Finally, for the case of nine oscillators, we carry out both computer calculations and circuit experiments. Circuit experimental results agree well with computer calculated results qualitatively.
Tsutomu MORIUCHI Kyoki IMAMURA
This paper presents a new method to derive the phase difference between n-tuples of an m-sequence over GF(p) of period pn-1. For the binary m-sequence of the characteristic polynomial f(x)=xn+xd+1 with d=1,2c or n-2c, the explicit formulas of the phase difference from the initial n-tuple are efficiently derived by our method for specific n-tuples such as that consisting of all 1's and that cosisting of one 1 and n-1 0's, although the previously known formula exists only for that consisting of all 1's.